Theoretical Physics 6a (QFT): SS 2020

 Exercise sheet 5

 Exercise sheet 5}
18.05.2020

Exercise 1. (40 points) : Dirac bilinears

Since a spinor turns into minus itself after a rotation over 2π, physical quantities must be bilinears in ψ, so that physical quantities turn into themselves after a rotation over 2π. These bilinears have the general form $\bar{\psi} \Gamma \psi$. There are 16 independent covariant ones related to 16 complex 4×4 matrices:

- $\Gamma_{S}=\mathbb{1}$ (scalar);
- $\Gamma_{P}=\gamma_{5}$ (pseudoscalar);
- $\Gamma_{V}^{\mu}=\gamma^{\mu}$ (vector);
- $\Gamma_{A}^{\mu}=\gamma^{\mu} \gamma_{5}$ (axial vector);
- $\Gamma_{T}^{\mu \nu}=\sigma^{\mu \nu} \equiv \frac{i}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right]$ (tensor).

Without referring to any explicit representation for the Γ matrices,
(a)(10 points) show that $\Gamma^{2}= \pm \mathbb{1}$.
(b)(10 points) show that for any Γ except Γ_{S}, we have $\operatorname{Tr}[\Gamma]=0$. Hint: show first that for any Γ except Γ_{S}, there always exists a Γ^{\prime} such that $\left\{\Gamma, \Gamma^{\prime}\right\}=0$.
(c)(10 points) check that the product of Γ_{A}^{μ} with any Γ is proportional to some Γ different from Γ_{S};
(d)(10 points) and using the Lorentz transformation of the Dirac spinor $\psi^{\prime}\left(x^{\prime}\right)=$ $S(a) \psi(x)$ with $x^{\prime \mu}=a^{\mu}{ }_{\nu} x^{\nu}$, check that the bilinears transform according to their name, i.e. $\bar{\psi}^{\prime} \psi^{\prime}=\bar{\psi} \psi, \bar{\psi}^{\prime} \gamma_{5} \psi^{\prime}=\operatorname{det}(a) \bar{\psi} \gamma_{5} \psi, \bar{\psi}^{\prime} \gamma^{\mu} \psi^{\prime}=a^{\mu}{ }_{\nu} \bar{\psi} \gamma^{\mu} \psi, \bar{\psi}^{\prime} \gamma^{\mu} \gamma_{5} \psi^{\prime}=$ $\operatorname{det}(a) a^{\mu}{ }_{\nu} \bar{\psi} \gamma^{\mu} \gamma_{5} \psi$ and $\bar{\psi}^{\prime} \sigma^{\mu \nu} \psi^{\prime}=a^{\mu}{ }_{\rho} a^{\nu}{ }_{\sigma} \bar{\psi} \sigma^{\rho \sigma} \psi$.

Exercise 2. (60 points) : The angular momentum operator

(a)(20 points) Starting from the transformation law for the classical Dirac field under Lorentz transformations show that the generators of these transformations are given by

$$
M_{\mu \nu}=i\left(x_{\mu} \partial_{\nu}-x_{\nu} \partial_{\mu}\right)+\frac{1}{2} \sigma_{\mu \nu}
$$

(b)(20 points) The angular momentum of the Dirac field is

$$
M_{\mu \nu}=\int d^{3} x \psi^{\dagger}(x)\left[i\left(x_{\mu} \partial_{\nu}-x_{\nu} \partial_{\mu}\right)+\frac{1}{2} \sigma_{\mu \nu}\right] \psi(x)
$$

Prove that

$$
\left[M_{\mu \nu}, \psi(x)\right]=-i\left(x_{\mu} \partial_{\nu}-x_{\nu} \partial_{\mu}\right) \psi(x)-\frac{1}{2} \sigma_{\mu \nu} \psi(x)
$$

(c)(20 points) Insert the normal mode expansions and construct explicitly the angular momentum tensor in terms of particles and anti-particles.

