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Exercise 1 (50 points): Real Klein-Gordon field

Using the normal mode expansion of the real Klein-Gordon field
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Show that:

(a)(25 points) the Hamiltonian H = [ d37 1 [QSQ + (Vo) + mquz} takes the form
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(b)(25 points) the momentum P = — f A3 ¢ V¢ takes the form
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Exercise 2 (50 points) : Complex Klein-Gordon field

The complex Klein-Gordon field is used to describe charged bosons. Its Lagrangian
is given by

£ = (9u6")(0"9) - m*¢'o, (1)
where the field ¢ has the following normal mode expansion
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and satifies the equal-time commutation relations
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all other commutators vanishing. In the following, you can conveniently consider
the fields ¢ and ¢! as independent.

(a)(15 points) Show that (1) is equivalent to the Lagrangian of two independent
real scalar fields with same mass and satisfying the standard equal-time commutation
relations. Hint: Decompose the complex field in real components ¢ = \% (p1+i2).

(b)(15 points) Write down the conjugate momentum fields I14 and IL; in terms
of ¢ and ¢!, and derive the equal-time commutation relations of a, af, b and bf.

(c)(10 points) Show that (1) is invariant under any global phase transformation of
the field ¢ — ¢’ = e *“¢ with o real. Write down the associated conserved Noether
current J*.

(d)(10 points) Express the conserved charge @ = [d3z J? in terms of creation
and annihilation operators. Compute the commutator [Q, ¢].



