Exercise sheet 12
 Theoretical Physics 5 : WS 2019/2020
 Lecturers : Prof. M. Vanderhaeghen, Dr. I. Danilkin

13.01.2020

Electron-nucleon elastic scattering

This exercise is based on "Cross section electron scattering" lecture notes.
a) (50 p.) Consider the hadronic tensor

$$
H_{\mu \nu}=\frac{1}{2} \sum_{s_{N}, s_{N}^{\prime}}\left\langle p^{\prime}, s_{N}^{\prime}\right| \hat{J}_{\mu}(0)\left|p, s_{N}\right\rangle\left\langle p, s_{N}\right| \hat{J}_{\nu}^{\dagger}(0)\left|p^{\prime}, s_{N}^{\prime}\right\rangle,
$$

with nucleon electromagnetic current

$$
\left\langle p^{\prime}, s_{N}^{\prime}\right| \hat{J}^{\mu}(0)\left|p, s_{N}\right\rangle=\bar{N}\left(p^{\prime}, s_{N}^{\prime}\right)\left[F_{1}^{N}\left(Q^{2}\right) \gamma^{\mu}+F_{2}^{N}\left(Q^{2}\right) i \sigma^{\mu \nu} \frac{q_{\nu}}{2 M_{N}}\right] N\left(p, s_{N}\right),
$$

where $F_{1,2}^{N}\left(Q^{2}\right)$ are Dirac and Pauli form factors for nucleon N.
Show that the hadronic tensor becomes

$$
H^{\mu \nu}=\left(-g^{\mu \nu}+\frac{q^{\mu} q^{\nu}}{q^{2}}\right) Q^{2}\left(G_{M}^{N}\right)^{2}+\left(p^{\mu}-\frac{p \cdot q}{q^{2}} q^{\mu}\right)\left(p^{\nu}-\frac{p \cdot q}{q^{2}} q^{\nu}\right) 4 \frac{\left(G_{E}^{N}\right)^{2}+\frac{Q^{2}}{4 M_{N}^{2}}\left(G_{M}^{N}\right)^{2}}{1+\frac{Q^{2}}{4 M_{N}^{2}}},
$$

where $G_{M}^{N}=F_{1}^{N}+F_{2}^{N}$ and $G_{E}^{N}=F_{1}^{N}-\frac{Q^{2}}{4 M_{N}} F_{2}^{N}$ are so-called electric and magnetic form factor.
b) (5 p.) Prove that $q_{\mu} H^{\mu \nu}=q_{\nu} H^{\mu \nu}=0$.
c) (10 p.) Explain why the most general interaction vertex is given by

$$
\Gamma_{\mu}=F_{1}^{N}\left(Q^{2}\right) \gamma^{\mu}+F_{2}^{N}\left(Q^{2}\right) i \sigma^{\mu \nu} \frac{q_{\nu}}{2 M_{N}} .
$$

d) (35 p.) Show that the elastic electron-nucleon cross section is described by Rosenbluth formula

$$
\left(\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right)^{\mathrm{El}, \mathrm{lab}}=\left(\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right)^{\mathrm{Mott}}\left(1-\frac{Q^{2}}{2 M_{N} \omega}\right)\left[\frac{\left(G_{E}^{N}\right)^{2}+\frac{Q^{2}}{4 M_{N}^{2}}\left(G_{M}^{N}\right)^{2}}{1+\frac{Q^{2}}{4 M_{N}^{2}}}+\frac{Q^{2}}{2 M_{N}^{2}} \tan ^{2} \frac{\theta}{2}\left(G_{M}^{N}\right)^{2}\right]
$$

where the Mott cross section is given by

$$
\left(\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right)^{\text {Mott }}=\frac{\alpha^{2} \cos ^{2} \theta / 2}{4 \omega^{2} \sin ^{4} \theta / 2}
$$

