Exercise sheet 11
 Theoretical Physics 5 : WS 2019/2020
 Lecturers : Prof. M. Vanderhaeghen, Dr. I. Danilkin

06.01.2020

Exercise 0.

How much time did it take to complete the task?

Exercise 1. (50 points)
 $e^{+} e^{-}$annihilation into a scalar quark-antiquark pair

Consider electron-positron annihilation into a quark-antiquark pair $e^{+}\left(k_{2}\right) e^{-}\left(k_{1}\right) \longrightarrow q\left(p_{2}\right) \bar{q}\left(p_{1}\right)$. Treat the electron as a massless Dirac particle and the quark as a massless Klein-Gordon particle.
a) (15 p.) The squared matrix element obtained as an average over electron and positron spin configurations can be expressed as

$$
|\mathcal{M}|^{2}=\frac{e^{4} e_{q}^{2}}{s^{2}} L^{\mu \nu} Q_{\mu \nu}
$$

with the quark charge $e_{q} e$.
Find the expressions for the quark tensor $Q_{\mu \nu}$ and the leptonic tensor $L_{\mu \nu}$ in terms of electron and quark momenta.
Hint: The leptonic tensor can be expressed as $L^{\mu \nu}=\frac{1}{2} \operatorname{Tr}\left[k^{\prime} \gamma^{\mu} k \gamma^{\nu}\right]$.
b) (15 p.) Calculate $L^{\mu \nu} Q_{\mu \nu}$ in terms of the Mandelstam variable s and the angle between the initial electron momenta and the final anti-quark momenta in the center-of- mass frame.
c) (10 p.) Express the result for $L^{\mu \nu} Q_{\mu \nu}$ in terms of the Mandelstam variable $s=\left(k_{1}+k_{2}\right)^{2}$ and variable $t=\left(k_{1}-p_{1}\right)^{2}$.
d) (10 p.) Find the result for the differential cross section in the center of mass frame.

Exercise 2. (50 points) $\pi^{+} e^{-}$elastic scattering

Consider elastic unpolarized $\pi^{+} e^{-}$scattering in Quantum Electrodynamics. Treat the electron as a massless Dirac particle and the pion as a massive Klein-Gordon particle with mass m.
a) (10 p.) Write down the expression for the differential cross-section in the laboratory frame in terms of the matrix element.
b) (15 p.) Integrate over the pion phase space and electron momentum and obtain the expression for angular differential cross section in terms of the electron scattering angle and the matrix element.
c) (15 p.) The squared matrix element obtained as an average over initial spin configurations and sum over final electron spin configurations can be expressed as

$$
|M|^{2}=\frac{e^{4}}{t^{2}} L^{\mu \nu} H_{\mu \nu}
$$

Find the expressions for the hadronic tensor $H_{\mu \nu}$ and the leptonic tensor $L_{\mu \nu}$ in terms of electron and pion momenta.
d) $(10 \mathrm{p}$.$) Find the result for the differential cross section in the laboratory frame.$

