2 problems. Total number of points given is 25 .
Grading: $20+$ excellent, $15+$ good, below 10 is incomplete.
Deadline: Thursday, December 19.

1. Spin-1 QED from Yang-Mills theory

Consider the following Lagrangian

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{2} G_{\mu \nu}^{*} G^{\mu \nu}+M_{W}^{2} W_{\mu}^{*} W^{\mu}-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \tag{1}
\end{equation*}
$$

that describes the photon field A_{μ} by $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$ and the massive charged complex vector field W_{μ} by $G_{\mu \nu}=D_{\mu} W_{\nu}-D_{\nu} W_{\mu}$, where $D_{\mu}=\partial_{\mu}+i e A_{\mu}$.
(a) $\{2 \mathrm{pts}\}$ Convince yourself that the Feynman rules interaction vertices are these:

$$
\begin{equation*}
\sim_{2}^{\sim} \overbrace{2}^{p_{2}} \int_{2_{1}}^{p_{1}^{\prime}}=-i e\left[\left(p_{1}^{\mu}+p_{2}^{\mu}\right) g^{\lambda \lambda^{\prime}}-p_{1}^{\lambda^{\prime}} g^{\mu \lambda}-p_{2}^{\lambda} g^{\mu \lambda^{\prime}}\right] \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\overbrace{\nu}^{\sim} \overbrace{\nu^{\prime}}^{\sim}=-i e^{2}\left(2 g^{\mu \mu^{\prime}} g^{\nu \nu^{\prime}}-g^{\mu \nu} g^{\mu^{\prime} \nu^{\prime}}-g^{\mu \nu^{\prime}} g^{\mu^{\prime \prime} \nu}\right) \tag{3}
\end{equation*}
$$

where the thicker lines depict vector boson W and the thinner ones are the photons.
(b) $\{5 \mathrm{pts}\}$ Taking the propagator of the vector field in the form

$$
\Delta_{W}^{\mu \nu}(k)=-i \frac{g^{\mu \nu}-\frac{k^{\mu} k^{\nu}}{M_{W}^{2}}}{k^{2}-M_{W}^{2}+i \epsilon},
$$

obtain the amplitude of the tree-level forward $(t=0)$ Compton scattering process in this theory using FORM. Make sure that the answer can be reduced to

$$
e^{2}\left[2 \epsilon_{q} \cdot \epsilon_{q}^{*} \chi_{p} \cdot \chi_{p}^{*}+\frac{\nu}{2 M_{W}}\left(\epsilon_{q} \cdot \chi_{p} \epsilon_{q}^{*} \cdot \chi_{p}^{*}-\epsilon_{q} \cdot \chi_{p}^{*} \chi_{p} \cdot \epsilon_{q}^{*}\right)\right]
$$

where $\epsilon_{k_{i}}$ are the photon polarization vectors and $\chi_{k_{i}}$ are the polarization vectors of the charged vector boson, $\nu=p \cdot q / M_{W}$.

Now turn to the $\mathrm{SU}(2)$ massive Yang-Mills theory with Lagrangian

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{4} \mathcal{F}_{\mu \nu}^{a} \mathcal{F}_{a}^{\mu \nu}+\frac{M_{W}^{2}}{2}\left[\left(\mathcal{A}_{\mu}^{1}\right)^{2}+\left(\mathcal{A}_{\mu}^{2}\right)^{2}\right], \quad a=1,2,3 ; \tag{4}
\end{equation*}
$$

where $\mathcal{F}_{a}^{\mu \nu}=\partial^{\mu} \mathcal{A}_{a}^{\nu}-\partial^{\nu} \mathcal{A}_{a}^{\mu}-e f^{a b c} \mathcal{A}_{b}^{\mu} \mathcal{A}_{c}^{\nu}, f^{a b c}=\epsilon^{a b c}$ are the structure constants of $\mathrm{SU}(2)$ algebra. Let the $3^{\text {rd }}$ (massless) component describe the photon $\mathcal{A}_{3}^{\mu}=A^{\mu}$, and the two other ones describe the charged vector boson $W^{ \pm}$with the following complex field: $W_{\mu}=\frac{1}{\sqrt{2}}\left(\mathcal{A}_{\mu}^{1}+i \mathcal{A}_{\mu}^{2}\right)$ and $W_{\mu}^{*}=\frac{1}{\sqrt{2}}\left(\mathcal{A}_{\mu}^{1}-i \mathcal{A}_{\mu}^{2}\right)$.
(c) $\{5 \mathrm{pts}\}$ Obtain the amplitude of the tree-level forward Compton scattering process $\gamma W^{ \pm} \rightarrow \gamma W^{ \pm}$in this theory using FORM. Compare results with (b).

2. Vacuum polarization in the Lamb shift

Consider the contribution of the QED vacuum polarization (VP) to the hydrogen Lamb shift (see Fig.1).

Figure 1: Vacuum polarization contribution to the Lamb shift at the first order.

The VP has the well-known form:

$$
\begin{equation*}
\Pi^{\mu \nu}(q)=\left(g^{\mu \nu} q^{2}-q^{\mu} q^{\nu}\right) \Pi\left(q^{2}\right) \tag{5}
\end{equation*}
$$

where we use the flat Minkowski metric, with $\operatorname{diag} g^{\mu \nu}=(1,-1,-1,-1)$. The renormalized $\Pi\left(q^{2}\right)$ satisfies the once-subtracted dispersion relation:

$$
\begin{equation*}
\Pi\left(q^{2}\right)=\frac{1}{\pi} \int_{t_{0}}^{\infty} d t \frac{\operatorname{Im} \Pi(t)}{t-q^{2}-i 0^{+}} \frac{q^{2}}{t}, \tag{6}
\end{equation*}
$$

where $t_{0}=4 m^{2}$ is the lowest particle-production threshold (m is the mass of the lepton in the loop).
The corresponding correction to the Coulomb potential $V_{C}(r)=-\alpha / r$ is given by:

$$
\begin{equation*}
\delta V(r)=\int \frac{d \vec{q}}{(2 \pi)^{3}} e^{i \vec{q} \cdot \vec{r}} \delta V\left(\vec{q}^{2}\right), \quad \delta V\left(\vec{q}^{2}\right)=-\frac{4 \pi \alpha}{\vec{q}^{2}} \Pi\left(-\vec{q}^{2}\right) . \tag{7}
\end{equation*}
$$

where the retardation effects can be neglected (i.e., $q_{0}=0$) because they are of higher order in α. This correction is referred to as the Uehling potential.
(a) $\{2 \mathrm{pts}\}$ Using the above dispersion relation, show that the Uehling potential is given by the Yukawa potential with a dispersed mass.
(b) $\{4 \mathrm{pts}\}$ Using the hydrogen wave-functions $\phi_{n l m}(\vec{r})$, calculate the first-order $2 P-2 S$ Lamb shift due to the Yukawa potential with mass M, i.e.:

$$
\int d \vec{r}\left(\left|\phi_{210}\right|^{2}-\left|\phi_{200}\right|^{2}\right) \frac{e^{-M r}}{r}=-\frac{\alpha^{3} m_{r}^{3} M^{2}}{2\left(M+\alpha m_{r}\right)^{4}}
$$

where m_{r} is the reduced mass of hydrogen.
(c) $\{2 \mathrm{pts}\}$ Combining the above two results, write down the general first-order VP contribution to the Lamb shift

$$
\Delta E(2 P-2 S)=\int d \vec{r}\left(\left|\phi_{210}\right|^{2}-\left|\phi_{200}\right|^{2}\right) \delta V(r)
$$

in terms of $\operatorname{Im} \Pi(t)$.
(d) $\{5 \mathrm{pts}\}$ Substitute the one-loop result for the electron VP:

$$
\operatorname{Im} \Pi^{(1)}(t)=-\frac{\alpha}{3}\left(1+\frac{2 m_{e}^{2}}{t}\right) \sqrt{1-\frac{4 m_{e}^{2}}{t}}
$$

and, using Mathematica, obtain the numerical value (in eV) for the Lamb shift in normal and muonic hydrogen.

