Exercise sheet 8
 Theoretical Physics 5 : WS 2019/2020
 Lecturers : Prof. M. Vanderhaeghen, Dr. I. Danilkin

02.12.2019

Exercise 0.

How much time did it take to complete the task?

Exercise 1. (25 points) : Projection operators

a) (15 p.) Show that $\Sigma_{ \pm} \equiv \Sigma(\pm n)=\frac{1}{2}\left(1 \pm \gamma_{5} \not\right)_{\text {}}$) are two complete sets of projection operators, i.e. satisfy the conditions

$$
\Sigma_{i} \Sigma_{j}=\delta_{i, j} \Sigma_{i} \quad \text { and } \quad \sum_{i} \Sigma_{i}=1, \quad \text { where } \quad i, j= \pm
$$

Show that $\Sigma_{+,-}$are the projection operators on positive- and negative-spin projection solutions for arbitrary direction of normalised spin vector $\left(n_{\mu} n^{\mu}=-1\right)$.
b) (10 p.) Do operators $\Sigma_{ \pm}$and $\Lambda_{ \pm}=\frac{1}{2 m_{0} c}\left(\pm p+m_{0} c\right)$ have a common system of eigenfunctions? Why?

Exercise 2. (60 points) :
 Normalization and completeness of Dirac spinors

Recall that the eigenfunctions of the Dirac equation have the form $\psi_{r}(x)=\omega_{r}(\vec{p}) e^{-i \lambda_{r} p_{\mu} x^{\mu} / \hbar}$, with $r=1 \ldots 4$, where $\lambda_{1,2}=1, \lambda_{3,4}=-1$ and

$$
\begin{aligned}
& \omega_{1}(\vec{p})=N \sqrt{\frac{E+m_{0} c^{2}}{2 m_{0} c^{2}}}\left(\begin{array}{c}
1 \\
0 \\
\frac{\vec{\sigma} \cdot \vec{p} c}{E+m_{0} c^{2}}\binom{1}{0}
\end{array}\right), \quad \omega_{2}(\vec{p})=N \sqrt{\frac{E+m_{0} c^{2}}{2 m_{0} c^{2}}}\left(\begin{array}{c}
0 \\
1 \\
\frac{\vec{\sigma} \cdot \vec{p} c}{E+m_{0} c^{2}}\binom{0}{1}
\end{array}\right), \\
& \omega_{3}(\vec{p})=N \sqrt{\frac{E+m_{0} c^{2}}{2 m_{0} c^{2}}}\left(\begin{array}{c}
\frac{\vec{\sigma} \cdot \vec{p} c}{E+m_{0} c^{2}}\binom{1}{0} \\
1 \\
0
\end{array}\right), \quad \omega_{4}(\vec{p})=N \sqrt{\frac{E+m_{0} c^{2}}{2 m_{0} c^{2}}}\left(\begin{array}{c}
\frac{\vec{\sigma} \cdot \vec{p} c}{E+m_{0} c^{2}}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) .
\end{array} .\right.
\end{aligned}
$$

For convenience, we introduce a common notation for positive-energy spinors:
$u\left(\vec{p}, s_{z}\right)=N \sqrt{\frac{E+m_{0} c^{2}}{2 m_{0} c^{2}}}\left(\begin{array}{c}\overrightarrow{\vec{\sigma} \cdot \vec{p} c} \\ E+m_{0} c^{2}\end{array} \chi_{s_{z}}\right) \quad$ with $\quad \chi_{s_{z}=\frac{1}{2}}=\binom{1}{0} \quad$ and $\quad \chi_{s_{z}=-\frac{1}{2}}=\binom{0}{1}$,
and for negative-energy ones:
$v\left(\vec{p}, s_{z}\right)=N \sqrt{\frac{E+m_{0} c^{2}}{2 m_{0} c^{2}}}\left(\begin{array}{c}\frac{\vec{\sigma} \cdot \vec{p} c}{E+m_{0} c^{2}} \\ \chi_{s_{z}}^{\prime}\end{array} \chi_{s_{z}}^{\prime} \quad\right.$ with $\quad \chi_{s_{z}=\frac{1}{2}}^{\prime}=\binom{0}{1} \quad$ and $\quad \chi_{s_{z}=-\frac{1}{2}}^{\prime}=\binom{1}{0}$.
In the following, the normalization of spinors is chosen to be $N=1$, so that $\bar{u}\left(p, s_{z}\right) u\left(p, s_{z}^{\prime}\right)=$ $\delta_{s_{z} s_{z}^{\prime}}$ and $\bar{v}\left(p, s_{z}\right) v\left(p, s_{z}^{\prime}\right)=-\delta_{s_{z} s_{z}^{\prime}}$.

Prove the following relations :
a) (15 p.) the normalization condition for spinors w

$$
\bar{w}_{r}(\vec{p}) w_{r^{\prime}}(\vec{p})=w_{r}^{\dagger}(\vec{p}) \gamma^{0} w_{r^{\prime}}(\vec{p})=\delta_{r r^{\prime}} \lambda_{r}
$$

b) (15p.) the completeness of spinors w

$$
\sum_{r=1}^{4} \lambda_{r}\left(w_{r}(\vec{p})\right)_{\alpha}\left(\bar{w}_{r}(\vec{p})\right)_{\beta}=\delta_{\alpha \beta}, \quad \alpha, \beta=1 \ldots 4
$$

c) $(15 \mathrm{p}$.

$$
\begin{aligned}
u^{\dagger}\left(p, s_{z}\right) u\left(p, s_{z}^{\prime}\right) & =\frac{E_{p}}{m_{0} c^{2}} \delta_{s_{z} s_{z}^{\prime}}, \\
v^{\dagger}\left(p, s_{z}\right) v\left(p, s_{z}^{\prime}\right) & =\frac{E_{p}}{m_{0} c^{2}} \delta_{s_{z} s_{z}^{\prime}},
\end{aligned}
$$

d) $(15 \mathrm{p}$.

$$
\begin{aligned}
\sum_{s_{z}} u\left(p, s_{z}\right) \bar{u}\left(p, s_{z}\right) & =\frac{\not p+m_{0} c}{2 m_{0} c} \\
\sum_{s_{z}} v\left(p, s_{z}\right) \bar{v}\left(p, s_{z}\right) & =\frac{\not p-m_{0} c}{2 m_{0} c}
\end{aligned}
$$

Exercise 3. (15 points) : Gordon identity

Derive the so-called Gordon identity

$$
\bar{u}\left(p^{\prime}\right) \gamma^{\mu} u(p)=\bar{u}\left(p^{\prime}\right)\left[\frac{P^{\mu}}{2 m_{0} c}+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 m_{0} c}\right] u(p),
$$

where $P=p^{\prime}+p, q=p^{\prime}-p$ and $\sigma^{\mu \nu}=\frac{i}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right]$.

