Exercise sheet 10 Theoretical Physics 5 : WS 2019/2020 Lecturers : Prof. M. Vanderhaeghen, Dr. I. Danilkin

16.12.2019

Exercise 0.

How much time did it take to complete the task?

Exercise 1. (30 points)

Consider the following integral:

$$
I=\int \frac{\mathrm{d}^{3} \vec{p}}{(2 \pi)^{3} 2 E_{p}} \frac{\mathrm{~d}^{3} \vec{q}}{(2 \pi)^{3} 2 E_{q}}(2 \pi)^{4} \delta^{(3)}(\vec{p}+\vec{q}-\vec{P}) \delta\left(E_{p}+E_{q}-P^{0}\right),
$$

where $E_{p}^{2}=m^{2}+\vec{p}^{2}$ and $E_{q}^{2}=m^{\prime 2}+\vec{q}^{2}$.
Show that the integral I is Lorentz invariant. Calculate it in the frame where $\vec{P}=0$.

Exercise 2. (30 points)

Prove that the differential cross section for a $2 \longrightarrow 2$ scattering in the centre-of-mass frame can be written as:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{1}{64 \pi^{2} s} \frac{\left|\vec{p}_{f}\right|}{\left|\vec{p}_{i}\right|}|\mathcal{M}|^{2},
$$

where \vec{p}_{i} and \vec{p}_{f} are the centre-of-mass momenta before and after the scattering, and s is the corresponding total energy of the system.

Exercise 3. (20 points)

A beam of alpha particles of energy $T=0.1 \mathrm{GeV}$ collides against a fixed target of aluminium (density $\rho=2.7 \mathrm{~g} / \mathrm{cm}^{3}$, molar mass $A=27 \mathrm{~g} / \mathrm{mol}$) of thickness of $d=1 \mathrm{~cm}$. The beam flux at the target is $\Phi=10^{9} \mathrm{~s}^{-1}$. A scintillating detector is placed at an angle $\theta=30^{\circ}$ from the beam axis, and $L=1 \mathrm{~m}$ away from the target. The active surface of the detector has a cross section of $1 \mathrm{~cm} \times 1 \mathrm{~cm}$ as seen from the target. Estimate the counting rate (a rate of counts per unit time) measured by the detector.

Exercise 4. (20 points)

Consider $e^{-} \mu^{-}$scattering and $e^{+} e^{-}$annihilation into $\mu^{+} \mu^{-}$processes (the arrows denote the direction of negative charge flow):

Show which of them corresponds to a space-like momentum transfer ($q^{2}=q^{\mu} q_{\mu}<0$) and which to a time-like one $\left(q^{2}>0\right)$.

