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3 Various Systems of Electromagnetic Units

The various systems of electromagnetic units differ in their choices of the
magnitudes and dimensions. of the various constants above. Because of relations
(A.3) and (A.11) there are only two constants (e.g., ki, k3) that can (and must) be
chosen arbitrarily. It is convenient, however, to tabulate all four constants (k;,=
ka, o, ks) for the commoner systems of units. These are given in Table 1. We note
that, apart from dimensions, the em units and MKSA units are very similar,
differing only in various powers of 10 in their mechanical and electromagnetic’
units. The Gaussian and Heaviside-Lorentz systems differ only by factors of 44
Only in the Gaussian (and Heaviside-Lorentz) system does ks have dimensions
It is evident from (A.7) that, with k; having dimensions of a reciprocal velocity,
E and B have the same dimensions. Furthermore, with ks=c', (A.7) shows that
for electromagnetic waves in free space E and B are equal in magnitude as well.
Only electromagnetic fields in free space have been discussed so far. Conse-
quently only the two fundamental fields E and B have appeared. There remains
the task of defining the macroscopic field variables D and H. If the averaged -
electromagnetic properties of a material medium are described by a macroscopic
polarization P and a magnetization M, the general form of the definitions of D
and E are

D= 60E+)\P
1 (A.12)
H=-=B-A'M .
Ko

where €o, po, A, A’ are proportionality constants. Nothing is gained by making D -
and P or ¥ and M have different dimensions. Consequently A and A’ are chosen
as pure numbers (A = X’=1 in rationalized systems, A=\'=4m in unrationalized
sysiems). But there is the choice as to whether B and P will differ in dimensions
from E, and H and M differ from B. This choice is made for convenience and_
simplicity, usually in order to make the macroscopic Maxwell equations have a
relatively simple, neat form. Before tabulating the choices made for different:
systems, we note that for linear, isotropic media the constitutive relations are::

always written
D=¢cE }
B=uH

Thus in (A.12) the constants €, and wo are the vacuum values of € and w. The
relative permittivity of a substance (often called the dielectric constant) is defined
as the dimensionless ratio (&/€o), while the relative permeability (often called the
permeability) is defined as (w/po).

Table 2 displays the values of € and po, the defining equations for D and H, -
the macroscopic forms of the Maxwell equations. and the Lorentz force equation-

(A.13)-
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. Table 1

Magnitudes and Dimensions of the Electromagnetic Constants for Various
Systems of Units

The dimensions are given after the numerical values. The symbol ¢ stands
for the velocity of light in vacuum (c=2.998x 10" cm/sec=2.998 x 10* m/sec).
The first four systems of units use the centimeter, gram, and second as their
fundamental units of length. mass. and time (I, m. 1). The MKSA svstem uses
the meter, kilogram, and second, plus current (I) as a fourth dimeﬁsion, with
the ampere as unit.

System k, k. o k.
Electrostatic
(esu) 1 EH(BID) 1 1
Electromagnetic
(emu) cH{Ft) 1 1 1
Gaussian 1 c V(153 (™) o |
T 1 | _ :
Heaviside-Lorentz o T (17 c(li™) Y
. v 1 -
Rationalized =107"¢? <107
ationalize P 107¢ g 10 1 1

MKSA (mlPrI7) (mlt™I7?)

in the five common systems of units of Table 1. For each system of units the
continuity equation for charge and current is given by (A.1), as can be verified
from the first pair of the Maxwell equations in the table in each case.* Similarly,
in all systems the statement of Ohm’s law is = ¢'E. where o is the conductivity.

4 Conversior of Equations and Amounts between
Gaussian Units and MKSA Units

The two systems of electromagnetic units in most common use today are the
Gaussian and rationalized MKSA systems. The MKSA system has the virtue of
pverall convenience in practical, large-scale phenomena, especially in engineer-
Ing applications. The Gaussian system is more suitable for microscopic problems
involving the electrodynamics of individual charged particles. etc. Since micro-
scopic, relativistic problems are important in this book, it has been found most
convenient to use Gaussian units throughout. In Chapter 8 on wave guides and
cavities an attempt has been made to placate the engineer by writing each key

* Some workers employ a modified Gaussian system of units in which current is
defined by I.= (1./c)(dq/d_r). Then the current density J in the table must be replaced by c3,
and the continuity equation is V - 3+ (1/c)(8p/31) = 0. See also the footnote below Table 4.
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Definitions of &, wo, D, H, Macroscopic Maxwell Equations, and Lorentz Force Equat
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Table 3
Conversion Table for Symbols and Formulas

The symbols for mass, length, time, force, and other not specifically
electromagnetic quantities are unchanged. To convert any cquation
in Gaussian variables to the corresponding equation in MKSA
quantities, on both sides of the equation replace the relevant symbols
listed below under ““Gaussian” by the corresponding “MKSA™
symbols listed on the right. The reverse transformation is also
allowed. Since the length and time symbols are unchanged, quantities
which differ dimensionally from one another only by powers of length
and/or time are grouped together where possible.

Quantity Gaussian MKSA
Velocity of light c (poea)™™?
Electric field E(®, V) Vame, E(®, V)
(potential, voltage)

2 47
Displacement D / —D
isplacemen Ve

Charge density 1
(charge, current density, plq, 3, L P) > p(g. 3. LP)
current, polarization) Ve
45
Magnetic induction B Iy
Ho
Magnetic field B Véaru, H
Magnetization M juj M
W [s3
Conductivity o s
Dielectric constant € f—
]
Permeability " i
Ho
Resistance (impedance) R(Z) de,R(Z)
Inductance L 47me, L
Capacitance £ : &
d1re,

DvE £



Table 4
Conversion Table for Given Amounts of a Physical Quantity

The table is arranged so that a given amount of some physical quantity, expressed as
so many MKSA or Gaussian units of that quantity, can be expressed as an €quivalep
number of units in the other system. Thus the entries in each row stand for the same
amount, expressed in different units. All factors of 3 (apart from exponents) should, for -
accurate work, be replaced by (2.99792456), arising from the numerical value of the
velocity of light. For example, in the row for displacement (D), the entry (127x 1.05')';js'
actually (2.99792x45x10%). Where a name for a unit has been agreed on or is n
common usage, that name is given. Otherwise, one merely reads so many Gaussian
units, or MKSA or SI units, :

Physical Quantity Symbol  Rationalized MKSA Gaussian
Length [ 1 meter (m) 10° centimeters
{cm)
Mass m 1 kilogram (kg) 10° grams (gm)
Time t 1 secend (sec) 1 second (sec)
Frequency v 1 hertz (Hz) 1 hertz (Hz)
Force E I newton 10° dynes
gnc;r:gy ‘g} 1 joule 10° ergs
Power p 1 watt 10° ergssec™
Charge q 1 coulomb 3x10° statcoulombs
Charge density p 1coulm™ 3x10° statcoul cm™
Current I 1 ampere (amp) 3x10° statamperes
Current density I lampm™ Ix10° statamp cm™
Electric field E Lvoltm™ %107 statvolt cm™
Potential ®.V  1volt s statvolt
Polarization P Icoulm™ 3x10° dipole
moment
cm™?
Displacement D 1coulm™ 12%X10° statvolt cm™
(statcoul
cm™
Conductivity a 1 mhom™ 9% 10" sec™
Resistance R 1 chm X107 secem™
Capacitance C 1 farad 9x 10" cm
Magnetic flux ¢, F  1weber 10° gauss cm’ or
maxwells
Magnetic induection B 1 tesla 10° gauss
Maguetic field H 1 ampere-turn m™ 47x 107" oersted
Magnetization M I ampere m™* 107 magnetic
' moment cm™
*Inductance E 1 henry 3X 107

" There is some confusion prevalent about the unit of inductance in Gaussian
units. This stems from the use by some authors of a modified system of Gaussian units in
which current is measured in electromagnetic units, so that the connection between
charge and current is f.=(1/c)(dg/d1). Since inductance is defined through the induced
voltage V=1(dl/dt) or the energy U=:LI". the choice of current defined in Section 2
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formula in such a way that omission of the factor in square brackets in the
equation will yield the equivalent MKSA equation (provided all symbols are
reinterpreted as MKSA variables).

Tables 3 and 4 are designed for general use in conversion from one system to
the other. Table 3 is a conversion scheme for symbols and equations which allows
the reader to convert any equation from the Gaussian system to the MKSA
system and vice versa. Simpler schemes are available for conversion only from
tf’le MKSA system to the Gaussian system, and other general schemes are
possible. But by keeping all mechanical quantities unchanged, the recipe in
Table 3 allows the straightforward conversion of quantities which arise from an
interplay of electromagnetic and mechanical forces (e.g., the fine structure
constant e’/fic and the plasma frequency w,>=4mne’/m) without additional
considerations. Table 4 is a conversion table for units to allow the reader to
express a given amount of any physical entity as a cértain number of MKSA
units or cgs-Gaussian units.

means that our Gaussian unit of inductance is equal in magnitude and dimensions (1"
to the electrostatic unit of inductance. The electromagnetic current I, is related to our
Gaussian current I by the relation I, =(1/c)I. From the energy definition of inductance we
see that the electro‘magnetic inductance £, is related to our Gaussian inductance L
through L, =¢’L. Thus L, has the dimensions of length. The modified Gaussian system
generglly uses the electromagnetic unit of inductance. as well as current. Then the voltage
relation reads V= (L,/c)(dL./d1). The numerical connection between units of inductance
is

I henry=3ix 107" Gaussian (es) unit=10"emu





