Examples Sheet 4
 Symmetries in Physics
 Winter 2019/20

Lecturer: PD Dr. G. von Hippel

1. Characters of $S O$ (3) (15 P.)
2. Show that any three-dimensional rotation by an angle φ is conjugate to a rotation by φ around the z-axis.
3. Considering a basis in which the $(2 j+1) \times(2 j+1)$ matrix $\rho_{j}\left(J_{3}\right)$ representing the generator J_{3} of rotations around the z-axis is diagonal, show that the character $\chi^{(j)}(\varphi)$ of the $(2 j+1)$-dimensional representation of $\mathrm{SO}(3)$ can be written as a finite geometric series in $\mathrm{e}^{i \varphi}$.
4. By a suitable rearrangement of terms reexpress this as

$$
\chi^{(j)}(\varphi)=\frac{\sin \left[\left(j+\frac{1}{2}\right) \varphi\right]}{\sin \left(\frac{1}{2} \varphi\right)}
$$

4. Using suitable expressions for the characters, show that the Clebsch-Gordan series for $\mathrm{SO}(3)$ is

$$
j_{1} \otimes j_{2}=\bigoplus_{j=\left|j_{1}-j_{2}\right|}^{j_{1}+j_{2}} j
$$

with no multiplicities.
2. Character tables for small groups (10 P.)

1. Determine the character tables for all finite groups with no more than six elements. [Hint: It's very easy for all but one of them.]
2. Explicitly check the sums over representations and conjugacy classes (rows and columns) involving the characters and dimensions of the irreps.
3. Clebsch-Gordan coefficients for $S U(2)$ (5 P.)

By repeated application of $J_{ \pm}=j_{1, \pm}+j_{2, \pm}$ calculate the Clebsch-Gordan coefficients for

1. $\frac{1}{2} \otimes \frac{1}{2}=1 \oplus 0$,
2. $1 \otimes \frac{1}{2}=\frac{3}{2} \oplus \frac{1}{2}$,
3. $1 \otimes 1=2 \oplus 1 \oplus 0$,
where the $\mathrm{SU}(2)$ irreps are labelled by the value of j corresponding to the eigenvalue $j(j+1)$ of the Casimir operator \boldsymbol{J}^{2}.
4. Young tableaux for $S U(3)$ (10 P.)

Using Young tableaux, show the Clebsch-Gordan series

1. $3 \otimes \overline{3}=8 \oplus 1$,
2. $3 \otimes 3=6 \oplus \overline{3}$,
3. $3 \otimes 3 \otimes 3=10 \oplus 8 \oplus 8 \oplus 1$, where the $\mathrm{SU}(3)$ irreps are labelled by their dimensions.
