Examples Sheet 3
 Symmetries in Physics
 Winter 2019/20

Lecturer: PD Dr. G. von Hippel

1. The Weyl group (15 P.)

Let

$$
s_{\boldsymbol{\alpha}_{i}}(x): \mathbb{R}^{r} \rightarrow \mathbb{R}^{r}, \boldsymbol{x} \mapsto \boldsymbol{x}-2 \frac{\boldsymbol{\alpha}_{i} \cdot \boldsymbol{x}}{\boldsymbol{\alpha}_{i}^{2}} \boldsymbol{\alpha}_{i}
$$

be the Weyl reflection corresponding to the root $\boldsymbol{\alpha}_{i}$. The Weyl group is the subgroup of $\mathrm{O}(r)$ generated by the Weyl reflections.

1. Show that $s_{\boldsymbol{\alpha}_{i}}$ permutes the positive roots other than $\boldsymbol{\alpha}_{i}$ if $\boldsymbol{\alpha}_{i}$ is simple.
2. Show that $\left\{s_{\boldsymbol{\alpha}_{i}} \mid \boldsymbol{\alpha}_{i}\right.$ simple $\}$ generates the Weyl group.
3. Conclude that the Weyl group can be presented as $\left\langle g_{1}, \ldots, g_{r} \mid\left(g_{i} g_{j}\right)^{r_{i j}}\right\rangle$, where $g_{i}=s_{\boldsymbol{\alpha}_{i}}$ for $\boldsymbol{\alpha}_{i}$ simple, $r_{i i}=1$, and $r_{i j}=2,3,4,6$ for $n_{i j}=0,1,2,3$. [Hint: What is the product of two reflections?]
4. The Chevalley basis (10 P.)

The Chevalley basis of a simple Lie algebra is defined by

$$
h_{i}=H_{\boldsymbol{\alpha}_{i}}, \quad e_{i}=E_{\boldsymbol{\alpha}_{i}}, \quad f_{i}=E_{-\boldsymbol{\alpha}_{i}}
$$

with $\boldsymbol{\alpha}_{i}$ the simple roots.

1. Show the commutation relations

$$
\left[h_{i}, h_{i}\right]=0, \quad\left[h_{i}, e_{j}\right]=K_{j i} e_{j}, \quad\left[h_{i}, f_{j}\right]=-K_{j i} f_{j}, \quad\left[e_{i}, f_{j}\right]=\delta_{i j} h_{j}
$$

where K is the Cartan matrix.
2. Show that the remaining root vectors are given by commutators of the e_{i}, f_{j} subject to the Serre relations

$$
\underbrace{\left[e_{i},\left[\ldots \left[e_{i},\right.\right.\right.}_{1-K_{j i}}, e_{j}] \ldots]=0, \quad \underbrace{\left[f_{i},\left[\ldots \left[f_{i},\right.\right.\right.}_{1-K_{j i}} f_{j}] \ldots]=0 .
$$

[Hint: Consider the lemmas on root strings.]
3. Working backwards from the Dynkin diagram (15 P.)

1. Starting from the Dynkin diagram for A_{2}, reconstruct the Cartan matrix.
2. Starting from the Cartan matrix for A_{2}, reconstruct a pair of simple roots. [Hint: You may pick $\boldsymbol{\alpha}_{1}=(1,0)^{t}$.]
3. Starting from the simple roots of A_{2}, reconstruct the full root system.
4. Repeat the above steps for G_{2}.
