## Simple FORM example

Let us consider the QED process, when the virtual photon decays into electron-positron pair:


Corresponding amplitude equals to the following:

$$
\begin{equation*}
\mathcal{M}=\epsilon_{\mu}^{\lambda}(q) \bar{u}\left(p_{1}\right)^{h_{1}} \gamma^{\mu} v\left(p_{2}\right)^{h_{2}} \tag{1}
\end{equation*}
$$

Suppose we need to calculate unpolarized the cross section of this process. Thus we need to take (1) squared, average it over photon helicity $(\lambda= \pm 1)$ and sum over fermion ( $h_{1}, h_{2}= \pm 1 / 2$ ) helicities (assume we are in the center-of-mass frame).

Applying the completeness relation for the photon polarization vectors

$$
\begin{equation*}
\sum_{\lambda} \epsilon_{\mu}^{\lambda}(q) \epsilon_{\nu}^{* \lambda}(q)=-g_{\mu \nu} \tag{2}
\end{equation*}
$$

and for the fermion spinors

$$
\begin{align*}
& \sum_{h_{1}} u^{h_{1}}\left(p_{1}\right) \bar{u}^{h_{1}}\left(p_{1}\right)=\not p_{1}+m  \tag{3}\\
& \sum_{h_{2}} v^{h_{2}}\left(p_{2}\right) \bar{v}^{h_{2}}\left(p_{2}\right)=\not p_{2}-m \tag{4}
\end{align*}
$$

we get the following expression:

$$
\begin{equation*}
\frac{1}{2} \sum_{\lambda} \sum_{h_{1}, h_{2}}|\mathcal{M}|^{2}=-\frac{1}{2} g_{\mu \nu} \operatorname{Tr}\left[\left(\not p_{1}+m\right) \gamma^{\mu}\left(\not p_{2}-m\right) \gamma^{\nu}\right] \tag{5}
\end{equation*}
$$

Let us calculate $-g_{\mu \nu} \operatorname{Tr}\left[\left(\not p_{1}+m\right) \gamma^{\mu}\left(\not p_{2}-m\right) \gamma^{\nu}\right]$ using FORM. The simplest FORM code for this problem is given below. It uses the gamma-matrices that are built into FORM.


Each FORM program begins from the variables declaration. The variables have different types: indices I, vectors V, tensors ntensor autodeclaring vectors autodeclare vector or indices autodeclare index, symbols symbol and even more. The dimension of the working space is 4 by definition, but can be changed by typing Dimension $\langle$ necessary number〉 before the allocations of variables.

Function nwrite statistics is used to exclude the usually unnecessary statistical information from the output.

As you see, the main function Amp2 follows after variable allocation and is expressed in terms of the metric (Euclidian - FORM does not have a built in Minkowski metic) tensor $d_{-}(m u, n u)$ that depends on two indices $m u$ and $n u$, gamma-matrices $g_{-}(1, m u), g_{-}(1, n u)$ (depends on index mu)
and $g_{-}(1, \mathrm{p} 1), g_{-}(1, \mathrm{p} 2)$ (dependence on some vector $p$ depicts $\left.\not p\right)$. The first number in brackets of gamma-matrices means the number of set of gamma-matrices that you can operate (e.g taking trace) independently.

```
10 local Amp2 = - d_(mu,nu)*(g_(1,p1)+m)*
11 g_(1,mu)*(g_(1,p2)-m)*g_(1,nu); *the main expression.
```

As natural in mathematical calculations, after writing the general expression, its simplifications follow. In our case they include taking trace over the one set of gamma-matrices, contraction over dummy indices (usually one can skip this string - FORM do this automatically), some particular substitution (p1.p2 means the scalar product $p_{1} \cdot p_{2}$ ) and printing the result to the terminal. Be aware, that simplifications run in the same order as you write them!

The code ends by .end


Also there exists another way to solve this problem, without using the built-in gamma-matrices, defining their algebra by hands.

Let us declare some tensor $g$ that will be our gamma-matrices. then, we

$$
5 \text { ntensor g; }
$$

rewrite the main function in terms of $g$ :
12 local Amp2 $=-d_{-}(m u, n u)^{*}(\mathrm{~g}(\mathrm{p} 1)+\mathrm{m})^{*} \mathrm{~g}(\mathrm{mu})^{*}(\mathrm{~g}(\mathrm{p} 2)-\mathrm{m})^{*} \mathrm{~g}(\mathrm{nu})$; *the main expression.

After taking a trace we can merge all products of $g$ in the following way

```
1 4
    * ---- Merging tensors. ?a means everything inside the brackets.
15
1 6 ~ r e p e a t ;
17 id g(?a)*g(?b)=g(?a, ?b);
18 endrepeat;
```

and define necessary relations of the Dirac algebra

| 20 | * Dirac algebra ------------------------- |
| :---: | :---: |
| 21 |  |
| 22 | id $\mathrm{g}(\mathrm{i}$ ? $)=0$; |
| 23 | id g(i?,i?) = 16; |
| 24 | id g(i1?,i2?,i3? $=0$; |
| 25 |  |
| 26 | id g(i1?, i2?, i3?, i4? ) = d_(i1, i2)*g(i3,i4) |
| 27 | -d_(i1,i3)*g(i2,i4) |
| 28 | +d_(i1,i4)*g(i2,i3); |
| 29 |  |
| 30 | id g(i1?,i2?) $=4^{*}$ d_(i1,i2) ${ }^{\text {d }}$ |

Here i? means "arbitrary index" (similarly, if p is the vector, p ? means "arbitrary vector" etc.). i should be declared in the beginning of the code, in our case autodeclare index i;

Both of the approaches give the same result

```
FORM 4.2 (Nov 2 2019) 64-bits
        #-
    Amp2 =
        8*m^2 + 4*q.q;
    0.00 sec out of 0.00 sec
```

