Simple FORM example

Let us consider the QED process, when the virtual photon decays into

electron-positron pair:
/ P1
>
N2
q

Corresponding amplitude equals to the following:

M = 62(9) a(Pl)hl v U(pQ)h2- (1)
Suppose we need to calculate unpolarized the cross section of this process.
Thus we need to take (1) squared, average it over photon helicity (A = £1)
and sum over fermion (hy, hy = +1/2) helicities (assume we are in the
center-of-mass frame).
Applying the completeness relation for the photon polarization vectors

> al@eq) = —gu (2)

A

and for the fermion spinors

Zuhl =g +m, (3)
ZU 2(p2)0™ (p2) = P2 —m, (4)

ho
we get the following expression:

—ZZWl = guuTr[(zzf1+m) "(p2 — m)y"] (5)

A hi,ha



Let us calculate —g,, Tr[(p1 + m)7*(p — m)v”] using FORM. The sim-
plest FORM code for this problem is given below. It uses the gamma-matrices
that are built into FORM.

£oas

Dimension 4;

I mu, nu;

vV q;

autodeclare vector p;
symbol m;

nwrite statistics;

local Amp2 = - d_(mu,nu)*(g_(1,p1)+m)*
g (1,mu)*(g (1,p2)-m)*g (1,nu);

traced,1;

contract;

id pl.p2 = q.q/2-m"2;
print;

.end

Each FORM program begins from the variables declaration. The variables
have different types: indices I, vectors V, tensors ntensor autodeclaring
vectors autodeclare vector or indices autodeclare index, sym-
bols symbol and even more. The dimension of the working space is 4 by
definition, but can be changed by typing Dimension (necessary number)
before the allocations of variables.

Function nwrite statistics is used to exclude the usually unneces-
sary statistical information from the output.

As you see, the main function Amp2 follows after variable allocation and
is expressed in terms of the metric (Euclidian - FORM does not have a
built in Minkowski metic) tensor d_ (mu, nu) that depends on two indices
mu and nu, gamma-matrices g_ (1, mu), g_(1, nu) (depends on index mu)



and g_(1,pl), g-(1,p2) (dependence on some vector p depicts p). The
first number in brackets of gamma-matrices means the number of set of
gamma-matrices that you can operate (e.g taking trace) independently.

local Amp2 = - d (mu,nu)*(g (1,p1)+m)*

g (1,mu)*(g (1,p2)-m)*g (1,nu); *the main expression.

As natural in mathematical calculations, after writing the general expres-
sion, its simplifications follow. In our case they include taking trace over the
one set of gamma-matrices, contraction over dummy indices (usually one can
skip this string - FORM do this automatically), some particular substitution
(pl.p2 means the scalar product p; - p2) and printing the result to the ter-
minal. Be aware, that simplifications run in the same order as you write
them!

The code ends by .end

traced,1;

contract;

id pl.p2 = q.q/2-m*2;
print;

.end

Also there exists another way to solve this problem, without using the
built-in gamma-matrices, defining their algebra by hands.
Let us declare some tensor g that will be our gamma-matrices. then, we

ntensor g;

rewrite the main function in terms of g:

local Amp2 = - d_(mu,nu)*(g(pl)+m)*g(mu)*(g(p2)-m)*g(nu); *the main expression.




After taking a trace we can merge all products of g in the following way

¥ ———- Merging tensors. ?a means everything inside the brackets.

repeat;
id g(?a)*g(?b)=g(?a,?b);
endrepeat;

and define necessary relations of the Dirac algebra
* Dirac algebra

id g(i?) = o;
id g(i?,i?) = 16;
id g(i1?,i2?,i3?)=e;

id g(i1?,i2?,i32,i4?) = d_(i1,i2)*g(i3,ia)
-d_(i1,i3)*g(i2,i4)
+d (i1,i4)*g(i2,i3);

id g(i1?,i2?) = 4*d_(i1,i2);

Here i? means “arbitrary index” (similarly, if p is the vector, p? means
“arbitrary vector” etc.). i should be declared in the beginning of the code,
in our case autodeclare index 1ij;.

Both of the approaches give the same result

FORM 4.2 (Nov 2 2819) 64-bits
H-

Amp2 =
8*m"2 + 4%q.q;

8.88 sec out of ©.80 sec



