Exercise sheet 7 Theoretical Physics 5 : WS 2019/2020
 Lecturers : Prof. M. Vanderhaeghen, Dr. I. Danilkin

25.12.2019

Exercise 0.

How much time did it take to complete the task?

Exercise 1. (20 + [10 bonus] points) : Inversion operator

Under space inversion, a vector is transformed as

$$
x^{\mu} \rightarrow x^{\prime \mu}=\left(a_{P}\right)^{\mu}{ }_{\nu} x^{\nu}, \quad \text { with } \quad\left(a_{P}\right)^{\mu}{ }_{\nu}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) .
$$

Find the explicit form of the corresponding inversion operator $P \equiv S\left(a_{P}\right)$.
Hint: Recall that for a transformation matrix a, the initial and transformed wave functions are related by $\psi^{\prime}\left(x^{\prime}\right)=S(a) \psi(x)$ such that

$$
S^{-1}(a) \gamma^{\nu} S(a)=a^{\nu}{ }_{\mu} \gamma^{\mu} .
$$

Bonus: Discuss whether P can be hermitian and can it be observable.

Exercise 2. (80 points) :

Dirac particle in a spherical potential well
Consider the Dirac equation

$$
\left[\hat{\vec{\alpha}} \cdot \hat{\vec{p}} c+\hat{\beta} m_{0} c^{2}\right] \psi(\vec{r})=[E-V(r)] \psi(\vec{r}),
$$

in a spherical potential well:

$$
V(r)=\left\{\begin{array}{cl}
-V_{0} \quad \text { for } \quad r \leq R, \\
0 & \text { for } \quad r>R
\end{array}\right.
$$

a) (20 p.) Show that

$$
\hat{\vec{\alpha}} \cdot \hat{\vec{p}}=-i\left(\hat{\vec{\alpha}} \cdot \vec{e}_{r}\right)\left(\hbar \frac{\partial}{\partial r}+\frac{\hbar}{r}-\frac{\beta}{r} \hat{K}\right),
$$

with $\hat{K}=\hat{\beta}(\hat{\vec{\Sigma}} \cdot \hat{\vec{L}}+\hbar)$ and $\vec{e}_{r}=\vec{r} / r$.
Hint: Use $\vec{\nabla}=\vec{e}_{r}\left(\vec{e}_{r} \cdot \vec{\nabla}\right)-\vec{e}_{r} \times\left(\vec{e}_{r} \times \vec{\nabla}\right)$.
b) (20 p.) Use the ansatz

$$
\psi(\vec{r})=\binom{g(r) \chi_{\kappa, \mu}(\theta, \phi)}{i f(r) \chi_{-\kappa, \mu}(\theta, \phi)}
$$

where χ are the eigenfunctions of the angular part:

$$
\begin{aligned}
& (\hat{\vec{\sigma}} \cdot \hat{\vec{L}}+\hbar) \chi_{\kappa, \mu}=-\hbar \kappa \chi_{\kappa, \mu}, \\
& (\hat{\vec{\sigma}} \cdot \hat{\vec{L}}+\hbar) \chi_{-\kappa, \mu}=\hbar \kappa \chi_{-\kappa, \mu},
\end{aligned}
$$

to find the differential equations for $u_{1}(r)=r g(r)$ and $u_{2}(r)=r f(r)$.
c) (20 p.) For $(\hbar k c)^{2} \equiv\left(E+V_{0}\right)^{2}-m_{0}^{2} c^{4}>0$ the general solution is given by:

$$
\begin{aligned}
& u_{1}(r)=r\left[a_{1} j_{l_{\kappa}}(k r)+a_{2} y_{l_{\kappa}}(k r)\right], \\
& u_{2}(r)=\frac{\kappa}{|\kappa|} \frac{\hbar c k r}{E+V_{0}+m_{0} c^{2}}\left[a_{1} j_{l_{-\kappa}}(k r)+a_{2} y_{l_{-\kappa}}(k r)\right],
\end{aligned}
$$

where j_{l} and y_{l} are the spherical Bessel functions of the first and second kind.
For $(\hbar K c)^{2} \equiv m_{0}^{2} c^{4}-\left(E+V_{0}\right)^{2}>0$ the general solution is given by:

$$
\begin{aligned}
& u_{1}(r)=r \sqrt{\frac{2 K r}{\pi}}\left[b_{1} K_{l_{\kappa}+1 / 2}(K r)+b_{2} I_{l_{\kappa}+1 / 2}(K r)\right], \\
& u_{2}(r)=\frac{\hbar c K r}{E+V_{0}+m_{0} c^{2}} \sqrt{\frac{2 K r}{\pi}}\left[-b_{1} K_{l_{-\kappa+1 / 2}}(K r)+b_{2} I_{l_{-\kappa+1 / 2}}(K r)\right],
\end{aligned}
$$

where $K_{l+1 / 2}$ and $I_{l+1 / 2}$ are the modified Bessel functions. Furthermore, it is

$$
l_{\kappa}=\left\{\begin{array}{cc}
\kappa & \text { for } \quad \kappa>0 \\
-\kappa-1 & \text { for } \quad \kappa<0
\end{array}\right.
$$

and

$$
l_{-\kappa}=\left\{\begin{array}{ccc}
-\kappa & \text { for } & -\kappa>0, \\
\kappa-1 & \text { for } & -\kappa<0 .
\end{array}\right.
$$

Determine the bound states, for which $E>-V_{0}+m_{0} c^{2},-m_{0} c^{2}<E<m_{0} c^{2}$.
d) (20 p.) Exploiting the continuity condition at $r=R$, derive the following relation for s-states $(\kappa=-1)$:

$$
\frac{k R \sin (k R)}{\sin (k R)-k R \cos (k R)}=\frac{k}{K} \frac{e^{-K R}}{e^{-K R}\left(1+\frac{1}{K R}\right)} \frac{E+m_{0} c^{2}}{E+V_{0}+m_{0} c^{2}} .
$$

Rewrite the above equation into:

$$
\begin{aligned}
\tan \left(\frac{R}{\hbar c} \sqrt{\left(E+V_{0}\right)^{2}-m_{0}^{2} c^{4}}\right) & \sqrt{\frac{E+V_{0}+m_{0} c^{2}}{E+V_{0}-m_{0} c^{2}}} \times \\
& \left\{\frac{\hbar c}{R}\left[\frac{1}{E+m_{0} c^{2}}-\frac{1}{E+V_{0}+m_{0} c^{2}}\right]-\sqrt{\frac{m_{0} c^{2}-E}{m_{0} c^{2}+E}}\right\}=1
\end{aligned}
$$

These equations relate the energy eigenvalues of the s-states and the properties of the spherical potential well.

Hint: If necessary, you can use the following Rayleigh formulas for (spherical) Bessel functions:

$$
\begin{aligned}
& j_{n}(x)=(-1)^{n} x^{n}\left(\frac{1}{x} \frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{n}\left(\frac{\sin (x)}{x}\right) \\
& y_{n}(x)=-(-1)^{n} x^{n}\left(\frac{1}{x} \frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{n}\left(\frac{\cos (x)}{x}\right) \\
& i_{n}(x)=x^{n}\left(\frac{1}{x} \frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{n}\left(\frac{\sinh (x)}{x}\right) \\
& k_{n}(x)=(-1)^{n} x^{n}\left(\frac{1}{x} \frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{n}\left(\frac{e^{-x}}{x}\right)
\end{aligned}
$$

with

$$
i_{n}(x)=\sqrt{\frac{\pi}{2 x}} I_{n+1 / 2}(x) \quad \text { and } \quad k_{n}(x)=\sqrt{\frac{\pi}{2 x}} K_{n+1 / 2}(x)
$$

