Exercise sheet 5
 Theoretical Physics 5 : WS 2019/2020
 Lecturers : Prof. M. Vanderhaeghen, Dr. I. Danilkin

11.11.2019

Exercise 0.

How much time did it take to complete the task?

Exercise 1. (60 points) : Dirac particle in a scalar potential

Consider a Dirac particle travelling along the z-axis and subject to the scalar square-well potential

$$
V(z)=\left\{\begin{array}{cll}
0 & \text { when } \quad z<-a / 2 & \text { (region I) } \\
V_{0} & \text { when }-a / 2 \leq z \leq a / 2 & \text { (region II) } \\
0 & \text { when } a / 2<z & \text { (region III) }
\end{array}\right.
$$

where $a>0$ and $V_{0}<0$. In regions I and III, the eigenvalue Dirac equation takes the form

$$
\left(\vec{\alpha} \cdot \hat{\vec{p}} c+\beta m_{0} c^{2}\right) \psi=E \psi
$$

while in region II, it has the form

$$
\left[\vec{\alpha} \cdot \hat{\vec{p}} c+\beta\left(m_{0} c^{2}+V_{0}\right)\right] \psi=E \psi .
$$

In this second region one can consider that due to the potential, the particle has now an effective mass $m_{\text {eff }}=m_{0}+V_{0} / c^{2}$.
a) (10 p.) Write down the general solution $\psi(z)$ in the three regions with the spin in the z-direction.
Hints: A plane-wave solution with momentum \vec{p}, mass m and spin label s can be written as

$$
u(\vec{p}, s)=A\left(\begin{array}{c}
\chi_{s} \\
\frac{c \vec{\sigma} \cdot \vec{p}}{E+m c^{2}}
\end{array} \chi_{s}\right) e^{\frac{i}{\hbar}(\vec{p} \cdot \vec{r}-E t)},
$$

where A is some complex number and χ_{s} a two-component spinor. For the spin projection along the z-axis, χ_{s} is an eigenstate of the Pauli matrix σ_{3}. Do not forget that plane waves can travel in both directions. Remember that the matrices $\vec{\alpha}$ and β in standard representation are given by

$$
\vec{\alpha}=\left(\begin{array}{cc}
0 & \vec{\sigma} \\
\vec{\sigma} & 0
\end{array}\right) \quad \text { and } \quad \beta=\left(\begin{array}{cc}
\mathbb{1} & 0 \\
0 & -\mathbb{1}
\end{array}\right) .
$$

b) (20 p.) Impose the continuity condition at $z= \pm a / 2$. Express the coefficient of the incoming plane wave of region I in terms of the plane waves of region III. Define for convenience the dimensionless quantity

$$
\gamma \equiv \frac{k_{1} c}{E+m_{0} c^{2}} \frac{E+m_{\mathrm{eff}} c^{2}}{k_{2} c}
$$

where k_{1} is the momentum in regions I and III, and k_{2} is the momentum in region II.
c) (30 p.) Consider the special case $\left|m_{\mathrm{eff}} c^{2}\right|<|E|<m_{0} c^{2}$ corresponding to bound states. Show that these states satisfy

$$
k_{2} \cot \left(\frac{k_{2} a}{\hbar}\right)=-\left(\frac{m_{0} V_{0}}{\kappa_{1}}+\kappa_{1}\right)
$$

where $\kappa_{1}=-i k_{1}$.
Hints: Show that in the case considered, there could be neither an incoming wave in region I nor an outgoing wave in region III. Show then that continuity requires

$$
\operatorname{Im}\left(\frac{1+\gamma}{1-\gamma} e^{-\frac{i}{\hbar} k_{2} a}\right)=0
$$

and that $\gamma=i \Gamma$ is imaginary leading then to

$$
\cot \left(\frac{k_{2} a}{\hbar}\right)=\frac{1-\Gamma^{2}}{2 \Gamma}
$$

Exercise 2. (15 points) : Helicity operator

The helicity operator is defined as $\hat{\Lambda}=\vec{S} \cdot \frac{\vec{p}}{|\vec{p}|}$. Derive the eigenvalues of the helicity operator for a particle with momentum $p=(\sin (\theta) \cos (\phi), \sin (\theta) \sin (\phi), \cos (\theta))$.

Exercise 3. (25 points) : Electrons in constant magnetic field

To study the behavior of electrons in a constant magnetic field, we have to solve the stationarystate Dirac equation

$$
\left(-i \hbar c \vec{\alpha} \cdot \vec{D}+\beta m_{0} c^{2}\right) \psi=E \psi
$$

where we have used minimal substitution $\vec{\nabla} \rightarrow \vec{D} \equiv \vec{\nabla}-i e \vec{A} / \hbar c$.
a) (10 p.) Verify that

$$
(\vec{\alpha} \cdot \vec{D})^{2}=\vec{D}^{2} \mathbb{1}+\frac{e}{\hbar c} \vec{\Sigma} \cdot \vec{B}, \quad \text { where } \quad \vec{\Sigma}=\left(\begin{array}{cc}
\vec{\sigma} & 0 \\
0 & \vec{\sigma}
\end{array}\right) .
$$

b) (15 p.) For the particular case $\vec{A}=(0, x B, 0)$ and by considering solutions of the form $\psi=e^{i\left(p_{y} y+p_{z} z\right) / \hbar} u(x)$, show that the energy eigenvalues E of a relativistic electron in constant magnetic induction \vec{B} are given by

$$
E^{2}=m_{0}^{2} c^{4}+p_{z}^{2} c^{2}+(2 n+1)|e B| \hbar c \pm e B \hbar c, \quad n \in \mathbb{N} .
$$

Hint: Remember that the eigenvalues of the harmonic oscillator operator $-\partial_{x}^{2}+\omega^{2} x^{2}$ are $(2 n+1)|\omega|$ with $n \in \mathbb{N}$.

