Examples Sheet 2

Symmetries in Physics Winter 2019/20

Lecturer: PD Dr. G. von Hippel

1. Properties of the structure constants (5 P.)

Let \mathfrak{g} be a Lie algebra with structure constants f_{bc}^a . Show that the structure constants satisfy

- 1. $f_{bc}^a = -f_{cb}^a$
- 2. $f_{bc}^a f_{de}^c + f_{dc}^a f_{ea}^c + f_{ec}^a f_{bd}^c = 0$
- 2. Low-dimensional Lie algebras (10 P.)
 - 1. Determine all Lie algebras of dimension 1.
 - 2. Show that all Lie algebras of dimension 2 can be reduced to either $[L_1, L_2] = 0$ or $[L_1, L_2] = L_2$ by a change of basis (with all other Lie brackets following from this or being trivially zero).
- 3. Disconnectedness of $GL(n, \mathbb{R})$ (5 P.)

Show that $GL(n,\mathbb{R}) = \{M \in \mathbb{R}^{n \times n} | \det(M) \neq 0\}$ is not connected. [Hint: Consider the determinant and find two points such that it must vanish at some point along any path joining them.]

4. Adjoint representation (10 P.)

Let \mathfrak{g} be a Lie algebra with structure constants f_{bc}^a . Define matrices T_b by $(T_b)_c^a = f_{bc}^a$. Show that the T_b satisfy the commutation relations $[T_b, T_c] = f_{bc}^a T_a$ defining \mathfrak{g} .

- 5. Angular momentum algebra (10 P.)
 - 1. Show that \mathbb{R}^3 with the cross product as the Lie bracket forms a Lie algebra.
 - 2. Determine the structure constants of this Lie algebra in the canonical basis.
 - 3. Find the matrices of the adjoint representation (cf. previous question). Where have you seen these matrices before?