Theoretical Particle Physics (Theorie Elementarteilchen)

Vladimir Pascalutsa

Institute of Nuclear Physics \& Cluster of Excellence PRISMA, University of Mainz, Germany

Module Topical Courses: "Theoretical Particle Physics"

	umber U-StINe) Workload (workload) 28.809 180 h	Course Duration (laut Studienverlaufsplan) 1	Designated term (laut Studienverlaufsplan) 1	Credit Points (LP) 6 LP
1.	Courses/Teaching methods Lecture with excercises "Theoretical Particle Physics" (WP) Lecture (WP) Excercises (WP)	Contact time $\begin{aligned} & 3 \text { SWS/31.5 h } \\ & 1 \text { SWS/10.5 h } \end{aligned}$	$\begin{aligned} & \text { Self-study } \\ & 138 \mathrm{~h} \end{aligned}$	Credit Points $6 \mathrm{LP}$
2.	Group sizes Lecture: unlimited Excercises: 20			
3.	Qualification and program goals / Competences The lecture course "Theoretical Particle Physics" builds upon and continues the lecture course "Relativistic Quantum Field Theory". The lectures' program goal is to provide a basic understanding of concepts and methods of quantum field theory which are required for a MA thesis in theoretical particle physics.			
4.	Course content Path integral formalism, quantum corrections, renormalization in QED, renormalization group; nonAbelian gauge theories, quantum chromodynamics (QCD), spontaneous symmetry breaking, Higgs mechanism, standard model of particle physics.			
5.	Applicable to the following programs MSc. Physics			
6.	Recommended prerequisites			
7.	Entry requirements			
8.	Mode and duration of examinations 8.1 Active participation successful completion of the exercises 8.2 Course achievements 8.3 Module examination Common oral examination (30 - 45 Min.) covering two topical courses			
9.	Weighting of the achievement in the overall grade $6 / 120$			
10.	Module frequency Usually every semester			
11.	Persons responsible for this module and full-time lecturers Responsible: Prof. Dr. S. Weinzierl Lecturers: All professors of theoretical high energy physics			
12.	Auxiliary Information Course language: English Literature: Peskin \& Schroeder, Ryder, Schwartz, Zee			

First glimpse of the Standard Model of Particle Physics

Fundamental constants of the vacuum

$$
\hbar \simeq 6.58 \times 10^{-16} \mathrm{eV} \mathrm{~s}
$$

quantum physics

$$
c \simeq 3 \cdot 10^{8} \mathrm{~m} / \mathrm{s}
$$

special relativity

Quantum Field Theory

$$
\begin{aligned}
& \hbar=c=1 \text { (Natural Units), e.g. } E=\sqrt{m^{2}+p^{2}}, \alpha=\frac{e^{2}}{4 \pi} \approx \frac{1}{137.036} \\
& \hbar c=0.1973 \ldots \mathrm{GeV} \mathrm{fm}=0.1973 \ldots \mathrm{eV} \mu \mathrm{~m}
\end{aligned}
$$

Standard Model

Electroweak QCD

Leptons

e, μ, τ
$v_{e}, v_{\mu}, v_{\mathrm{r}}$

Hings Boson
$S=1 / 2$, spinor : $\psi^{(\alpha)}(x)$
$S=1$, vector : $A_{\mu}(x)$
$S=0$, scalar : $\phi(x)$

Unification of fundamental interactions

Running of QCD coupling

For $Q^{2} \rightarrow \infty, \alpha_{s} \rightarrow 0$:asymptotic freedom
For $Q \sim \Lambda_{Q C D}$ non-perturbative phenomena: color confinement, spontaneous chiral symmetry breaking, generation of nucleon mass, ...

Feynman rules of the SM

(arXiv: hep-ph/9507456)

Propagators:

$W_{\mu}^{W_{\mu}^{+}} W_{\nu}^{W_{\nu}^{-}} \frac{1}{k^{2}-M_{W}^{2}+i \varepsilon}\left(g_{\mu \nu}-\left(1-\xi_{W}\right) \frac{k_{\mu} k_{\nu}}{k^{2}-\xi_{W} M_{W}^{2}+i \varepsilon}\right)$
$W_{M}^{Z_{\mu}} W_{W}^{Z_{\nu}} \frac{1}{k^{2}-M_{Z}^{2}+i \varepsilon}\left(g_{\mu \nu}-\left(1-\xi_{Z}\right) \frac{k_{\mu} k_{\nu}}{k^{2}-\xi_{Z} M_{Z}^{2}+i \varepsilon}\right)$
$A_{\mu}^{A_{\mu}} \quad \begin{array}{cc}A_{\nu} & 1 \\ k^{2}+i \varepsilon & \left(g_{\mu \nu}-\left(1-\xi_{A}\right) \frac{k_{\mu} k_{\nu}}{k^{2}+i \varepsilon}\right)\end{array}$
$G_{\mu}^{a} G_{\nu}^{b} \quad \delta^{a b} \frac{1}{k^{2}+i \varepsilon}\left(g_{\mu \nu}-\left(1-\xi_{G}\right) \frac{k_{\mu} k_{\nu}}{k^{2}+i \varepsilon}\right)$
$\stackrel{\mathrm{k} \quad \bar{\psi}}{\hookleftarrow}-\frac{\hat{k}+m}{k^{2}-m^{2}+i \varepsilon}=\frac{\hat{k}+m}{m^{2}-k^{2}+i \varepsilon}$

$\omega^{+} \cdot \stackrel{\omega^{-}}{\bullet----*--\bullet} \quad-\frac{1}{k^{2}-\xi_{W} m_{W}^{2}+i \varepsilon}$
$\begin{array}{lc}z & z \\ \bullet--------\end{array} \quad-\frac{1}{k^{2}-\xi_{Z} m_{Z}^{2}+i \varepsilon}$

$$
c^{+} \quad \bar{c}^{-} \quad-\cdots \cdots \cdots \cdot \quad-\frac{1}{k^{2}-\xi_{W} m_{W}^{2}+i \varepsilon}
$$

$$
c^{-} \cdot \ldots \ldots<\cdots \cdot \bar{c}^{+} \quad-\frac{1}{k^{2}-\xi_{W} m_{W}^{2}+i \varepsilon}
$$

$$
c^{Z} \cdot \bar{c}^{Z} \quad-\frac{1}{k^{2}-\xi_{Z} m_{Z}^{2}+i \varepsilon}
$$

$$
c^{A} \quad \bar{c}^{A} \quad-\cdots<\cdots \cdot \frac{1}{k^{2}+i \varepsilon}
$$

$$
c_{a} \ldots \ldots<\cdots \cdots \cdot \bar{c}_{b} \quad-\delta_{a b} \frac{1}{k^{2}+i \varepsilon}
$$

10.4.1 Gauge Boson Three-vertices

10.4.2 Gauge Boson Four-vertices

$e^{2}\left(g^{\alpha \gamma} g^{\beta \delta}+g^{\alpha \delta} g^{\beta \gamma}-2 g^{\alpha \beta} g^{\gamma \delta}\right) \quad e^{2} \cot \vartheta_{W}\left(g^{\alpha \gamma} g^{\beta \delta}+g^{\alpha \delta} g^{\beta \gamma}-2 g^{\alpha \beta} g^{\gamma \delta}\right)$

Vertices

10.4.3 Gauge-boson-fermion Vertices

$\bar{\psi}_{I} \psi_{I} Z$

$$
\frac{e}{\sin 2 \vartheta_{W}} \gamma^{\alpha}\left(\frac{1}{2}\left(1-\gamma^{5}\right)-2 Q_{I} \sin ^{2} \vartheta_{W}\right)
$$

$\bar{\psi}_{i} \psi_{i} Z$

$$
\frac{e}{\sin 2 \vartheta_{W}} \gamma^{\alpha}\left(-\frac{1}{2}\left(1-\gamma^{5}\right)-2 Q_{i} \sin ^{2} \vartheta_{W}\right)
$$

$$
\begin{aligned}
& -g_{s}^{2}\left(f^{r a b} f^{r c d}\left(g^{\alpha \gamma} g^{\delta \beta}-g^{\alpha \delta} g^{\beta \gamma}\right)\right. \\
& \quad+f^{r a c} f^{r r b}\left(g^{\alpha \delta} g^{\beta \gamma}-g^{\alpha \beta} g^{\gamma \delta}\right) \\
& \left.\quad+f^{r a d} f^{r b c}\left(g^{\alpha \beta} g^{\gamma \delta}-g^{\alpha \gamma} g^{\delta \beta}\right)\right)
\end{aligned}
$$

Vertices (continued)

10.4.5 Gauge-boson-Higgs Four-vertices

10.4.6 Higgs Three-vertices

10.4.8 Higgs-boson-fermion Vertices

$$
\begin{array}{l:l}
\begin{array}{ll}
\bar{\psi}_{n} \psi_{n} \phi \\
& \phi \\
\psi_{n} & \bar{\psi}_{n} \\
\hdashline-\frac{e}{\sin 2 \vartheta_{W}} \frac{m_{n}}{M_{Z}}
\end{array}
\end{array}
$$

10.4.7 Higgs Four-vertices

$-\frac{3 e^{2}}{\sin ^{2} 2 \vartheta_{W}} \frac{m_{H}^{2}}{M_{Z}^{2}}$

Loops

Finally, every loop integration is performed by the rule

$$
\int \frac{d^{d} k}{i(2 \pi)^{d}},
$$

and with every fermion or ghost loop we associate extra factor (-1).

Vacuum polarization

Light-by-light scattering

Higgs decay

(1)

(4)

(2)

(5)

(3)

(6)

Exercise sessions

will sometimes involve computer algebra, i.e., FORM, FeynCalc, LoopTools (Mathematica)

BYOL

