Theoretical Particle Physics (Theorie Elementarteilchen)

Vladimir Pascalutsa

Institute of Nuclear Physics & Cluster of Excellence PRISMA, University of Mainz, Germany

	number GU-StINe)	Workload (workload)	Course Duration (laut Studienverlaufsplan)	Designated term (laut Studienverlaufsplan)	Credit Points (LP)
	128.809	180 h	1	1	6 LP
1.	Courses/Teaching methods Lecture with excercises "Theoretical Particle Physics" (WP) Lecture (WP) Excercises (WP)		Contact time 3 SWS/31.5 h 1 SWS/10.5 h	Self-study 138 h	Credit Points 6 LP
2.	Group sizes Lecture: unlimited Excercises: 20				
3.	Qualification and program goals / Competences The lecture course "Theoretical Particle Physics" builds upon and continues the lecture course "Re- lativistic Quantum Field Theory". The lectures' program goal is to provide a basic understanding of concepts and methods of quantum field theory which are required for a MA thesis in theoretical particle physics.				
4.	Course content Path integral formalism, quantum corrections, renormalization in QED, renormalization group; non- Abelian gauge theories, quantum chromodynamics (QCD), spontaneous symmetry breaking, Higgs mechanism, standard model of particle physics.				
5.	Applicable to the following programs MSc. Physics				
6.	Recommended prerequisites				
7.	Entry requirements				
8.	Mode and duration of examinations 8.1 Active participation successful completion of the exercises 8.2 Course achievements				
	8.3 Module examination Common oral examination $(30 - 45 \text{ Min.})$ covering two topical courses				
9.	Weighting of the achievement in the overall grade $6/120$				
10.	Module frequency Usually every semester				
11.	Persons responsible for this module and full-time lecturers Responsible: Prof. Dr. S. Weinzierl Lecturers: All professors of theoretical high energy physics				
12.	Auxiliary Information Course language: English Literature: Peskin & Schroeder, Ryder, Schwartz, Zee				

First glimpse of the Standard Model of Particle Physics

Fundamental constants of the vacuum

 $\hbar \simeq 6.58 \times 10^{-16} \,\mathrm{eV}\,\mathrm{s}$ $c \simeq 3 \cdot 10^8 \,\mathrm{m/s}$

quantum physics

special relativity

Quantum Field Theory

 $\hbar = c = 1$ (Natural Units), e.g. $E = \sqrt{m^2 + p^2}$, $\alpha = \frac{e^2}{4\pi} \simeq \frac{1}{137.036}$ $\hbar c = 0.1973...$ GeV fm = 0.1973... eV μ m

Standard Model Electroweak QCD

Unification of fundamental interactions

Running of **QCD** coupling

For $Q^2 \rightarrow \infty, \, \alpha_s \rightarrow 0$: asymptotic freedom

For $Q \sim \Lambda_{QCD}$ non-perturbative phenomena: color confinement, spontaneous chiral symmetry breaking, generation of nucleon mass, ...

Feynman rules of the SM (arXiv: hep-ph/9507456)

$$egin{array}{cccc} & k^2-m_H^2+iarepsilon \ & \omega^+ & \omega^- & -rac{1}{k^2-\xi_W\,m_W^2+iarepsilon} \end{array}$$

1

 ϕ

 ϕ

$$\begin{array}{c} W_{\mu}^{+} & W_{\nu}^{-} \\ \bullet & & \\ \bullet & &$$

$$\underbrace{ \begin{array}{c} Z_{\mu} & Z_{\nu} \\ \bullet & & \end{array} }_{k^2 - M_Z^2 + i\varepsilon} \left(g_{\mu\nu} - (1 - \xi_Z) \, \frac{k_{\mu}k_{\nu}}{k^2 - \xi_Z M_Z^2 + i\varepsilon} \right)$$

$$\underbrace{ \begin{array}{c} A_{\mu} & A_{\nu} \\ \bullet \end{array} }_{k^{2}+i\varepsilon} \left(g_{\mu\nu} - \left(1-\xi_{A} \right) \frac{k_{\mu}k_{\nu}}{k^{2}+i\varepsilon} \right)$$

$$\int_{a}^{a} G_{\nu}^{b} \qquad \delta^{ab} \frac{1}{k^{2} + i\varepsilon} \left(g_{\mu\nu} - (1 - \xi_{G}) \frac{k_{\mu}k_{\nu}}{k^{2} + i\varepsilon} \right)$$

$$\psi$$
 k $\overline{\psi}$ $-\frac{\hat{k}+m}{k^2-m^2+i\varepsilon}=rac{\hat{k}+m}{m^2-k^2+i\varepsilon}$

••• • • • • • • • •

 ZZW^+W^-

 W^+_{α}

 W_{β}

 $W^+W^-W^+W^-$

 $-rac{e^2}{\sin^2artheta_W}(g^{lpha\gamma}g^{eta\delta}+g^{lpha\delta}g^{eta\gamma}-2g^{lphaeta}g^{\gamma\delta})$

 $G^a_{\alpha} \longrightarrow \mathcal{O}^{\mu \nu} \mathcal{O}^{d}_{\mathcal{S}}$ $G^b_{\beta} = \mathcal{O}^{\mu \nu} \mathcal{O}^{\mu \nu} \mathcal{O}^{d}_{\mathcal{S}}$

 $\begin{array}{l} -g_s^2 \left(f^{rab} f^{rcd} (g^{\alpha \gamma} g^{\delta \beta} - g^{\alpha \delta} g^{\beta \gamma}) \right. \\ \left. + f^{rac} f^{rdb} (g^{\alpha \delta} g^{\beta \gamma} - g^{\alpha \beta} g^{\gamma \delta}) \right. \end{array}$

 $+ f^{rad} f^{rbc} (q^{\alpha\beta} q^{\gamma\delta} - q^{\alpha\gamma} q^{\delta\beta})$

GGGG

10.4.3 Gauge-boson-fermion Vertices

Loops

Finally, every loop integration is performed by the rule

$$\int rac{d^d \ k}{i \ (2\pi)^d},$$

and with every fermion or ghost loop we associate extra factor (-1).

Higgs decay

Exercise sessions will sometimes involve computer algebra, i.e., FORM, FeynCalc, LoopTools (Mathematica)

BYOL