
Practice Exam

Theoretical Physics 6a (QFT): SS 2019

08.07.2019

Exercise 1. e+e− → φ+φ− (50 points)

In the lecture, we derived the differential cross section (dσ/dΩ) for the e+e− → µ+µ− in the collider
frame, assuming the high energy limit (

√
s� mµ).

For this exercise, consider the case when the muons (spin 1/2) are replaced by spinless bosons φ (spin
0).

(a)(20 points)Determine the possible Feynman diagrams at leading order and calculate the cor-
responding S-matrix element (Sfi) for the e+e− → φ+φ− process using Feynman rules.
Hint: Notice that the scalar QED interaction needs to be considered in this case.

(b)(25 points) Calculate the unpolarized differential cross-section dσ/dΩ for this process in the
the center of mass frame (collider frame).

(c)(05 points) Using the result obtained in the previous item, determine the total cross section.

Exercise 2. Conformal Symmetry (15 points)

Consider the Lagrangian for scalar φ4 theory:

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − g

4!
φ4 (1)

a) (5 p.) Calculate the energy momentum tensor

Tµν =
∂L

∂(∂µφ)
∂νφ− gµνL, (2)

and show explicitly by using the equation of motion for the field φ that

∂µT
µν = 0. (3)

From which symmetry transformation follows the conservation law of the energy momentum tensor?

b) (5 p.) Calculate the trace Tµµ of the energy-momentum tensor and show that it can be written as
a divergence in the case of m = 0.

c) (5 p.) Consider a infinitesimal scaling transformation

x′ = (1− ε)x. (4)

This transformation induces a transformation law for the scalar field as:

φ′(x′) = (1 + εdφ)φ(x), (5)

where dφ is the scaling parameter of the field φ. Show that the variation of the field φ s given by:

δφ = φ′(x)− φ(x) = ε(dφ + xµ∂µ)φ (6)
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Exercise 3. 1-loop correction to the propagator in Yukawa theory (35
+ 10 Bonus points)

Consider the interaction between a scalar field φ (with mass M) and a spin 1/2 field ψ (with mass m)
described by the Lagrangian:

L =
1

2
(∂µφ)(∂µφ)− 1

2
M2φ2 + ψ̄(iγµ∂µ −m)ψ − λψ̄ψφ, (7)

where λ is a coupling constant.

a) (5 p.) Derive the Feynman rule corresponding to the interaction term.

b) (10 p.) The 1-loop correction to the scalar propagator induced by a fermion loop is presented in
Fig. 3. Use the Feynman rules to derive the invariant amplitude M for this diagram, using the
momentum labels as indicated on the figure.

Figure 1: One-loop correction to the scalar propagator in Yukawa theory, given by the Lagrangian in
Eq. (7).

c) (10 p.) Use the Feynman parameterization, and perform the one-loop integral using dimensional
regularization (and using the formulas given at the end). Show that the result can be expressed
as:

M1−loop = i
4(d− 1)λ2µ4−d

(4π)d/2
Γ(1− d/2)

∫ 1

0
dx

1

[m2 − p2x(1− x)]1−d/2
, (8)

where d denotes the dimensionality of space-time, and µ is some arbitrary scale to keep the coupling
λ dimensionless.

d) (10 p.) The scalar counterterms (CT ) that have to be added to the diagram of Fig. 2 correspond
with the Feynman rule:

MCT = i
[
p2δφ −M2(δM + δφ)

]
, (9)

where δφ is the counterterm for the field φ, and δM is the counterterm for the scalar squared mass
M2.
Defining ε ≡ 2−d/2, expand the above result for the invariant amplitudeM in ε to extract the pole
term in 1/ε. Use the MS subtraction scheme, i.e. absorb only the divergent parts, and determine
the MS expressions for the counterterms δφ and δM .

e) (10 Bonus p.) The renormalized propagator of the scalar field is given by

i

p2 −M2 − ΣR(p2)
, (10)

with the renormalized self-energy ΣR(p2) = i(M1−loop +MCT ). Using the above result for the
invariant amplitude, what is the expression for ΣR(p2) in the MS scheme? You do not need to
perform the Feynman parameter integral. What is the expression for the difference between the
pole value (M2

P ) and the MS value (M2
MS

) of the squared scalar mass ?
Note: This difference determines the shift in the Higgs mass (M) due to the heavy (mass m)
top-quark loop.

2



Useful Formulas

The formula for the cross section for the process a+ b→ c+ d is given by:

dσ =
1

(2Ea)(2Eb)vrel

d3~pc
(2π)3(2Ec)

d3~pd
(2π)3(2Ed)

(2π)4δ4(pa + pb − pc − pd)|M|2, (11)

where the four-momenta for each particle are given by pi = (Ei, ~pi), where vrel stands for the incident
flux, and M is the invariant amplitude.

1

D1D2
=

∫ 1

0
dx

1

[(1− x)D1 + xD2]
2 (12)

∫
ddq

(2π)d
1

(q2 −∆ + iε)n
=

i

(4π)d/2
Γ(n− d/2)

Γ(n)

(−1)n

∆n−d/2 (13)

∫
ddq

(2π)d
qµqν

(q2 −∆ + iε)n
= gµν

i

(4π)d/2
Γ(n− 1− d/2)

2Γ(n)

(−1)n−1

∆n−1−d/2 (14)

Γ(z + 1) = zΓ(z) (15)

Γ(−1 + ε) = −1

{
1

ε
+ 1− γE +O(ε)

}
, (16)

with Euler constant γE ≈ 0.577.
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