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1. Reading List

1. Les Houches Lecture Notes, sections 6.2.2.4 and 6.2.3.1 (p. 355-357),
and section 6.2.4 (p. 361-365)

2. Gattringer/Lang, sections 4.5 (p. 93-100) and 8.2 (p. 190-199)

2. Molecular Dynamics and HMC Algorithm

In Problem Sheet 4 we studied Markov chains over discrete state spaces as a basis
for Monte-Carlo algorithms. For lattice gauge theories with continuous gauge groups,
however, we require continuous state spaces. In this case the transition probability
matrix Ts′s is replaced by a transition probability density T (U ′ ← U) which must be
positive,

T (U ′ ← U) ≥ 0 ∀U ′, U ∈ X,

and normalized with regard to the measure µ on X,∫
X

dµ(U ′)T (U ′ ← U) = 1 ∀U ∈ X,

in order to be interpretable as a probability density. We will moreover demand that an
invariant distribution is given by P ,∫

X

dµ(U)T (U ′ ← U)P (U) = P (U ′) ∀U ′ ∈ X,

as well as a condition that corresponds to the aperiodicity and ergodicity conditions of
the discrete case, e.g.

∀V ∈ X ∃N open, V ∈ N ∃ε > 0 ∀U,U ′ ∈ N T (U ′ ← U) ≥ ε.

Under these conditions, the results we obtained in the discrete case also hold (although
proving this rigorously is hard).

In the following, we will consider in particular the case X = SU(Nc)
V D with the measure

induced by the Haar measure on SU(Nc).



(a) We denote by Uτ (U0, π0) the solution U(τ) of Hamilton’s equations

π̇ = − ∂S(eωU)

∂ω

∣∣∣∣
ω=0

U̇ = πU

for π ∈ Y = su(Nc)
V D with initial conditions U(0) = U0, π(0) = π0 at time t = τ .

Show (as far as possible) that the transition probability density

T (U ′ ← U) =
1

Zπ

∫
Y

dπ e−
1
2
||π||2δ(U ′ − Uτ (U, π))

with Zπ =
∫
Y

dπ e−
1
2
||π||2 satisfies our conditions for P (U) ∝ e−S(U). Which algo-

rithm (MD method) does this correspond to?

(b) In practical applications we cannot solve Hamilton’s equations exactly and have to
make do with numerical solutions. Show that the leapfrog method

(Uτ , πτ ) = V ε
2
TεVεVε · · ·VεTεV ε

2
(U0, π0)

for τ = Nε with N applications of

Tε(U, π) = (eεπU, π)

Vε(U, π) = (U, π − εF (U))

preserves the measure dµ(U)∧ dπ on X × Y as well as the time-reversal invariance
of the time evolution.

(c) Since the Hamiltonian function H(U, π) = 1
2
||π||2 + S(U) is not preserved exactly

by numerical integration, we have to augment the numerical solution (Ũτ , π̃τ ) of
Hamilton’s equations by a Metropolis accept-reject step. This gives us the Hybrid
Monte-Carlo (HMC) Algorithm with transition probability density

T (U ′ ← U) =
1

Zπ

∫
Y

dπ e−
1
2
||π||2

(
Pacc(τ, U, π)δ(U ′ − Ũτ ) + [1− Pacc(τ, U, π)]δ(U ′ − U)

)
where Pacc(τ, U, π) = min{1, e−(H(Ũτ (U,π),π̃τ (U,π))−H(U,π))}. Convince yourself (as far
as possible) that this satisfies our conditions, and spell out the algorithm in terms
of computational steps.



3. Autocorrelations in Markov Chains

The successive states sk of a Markov chain are (after a sufficiently long thermaliza-
tion phase) each drawn from the probability distribution P (s), but in general they are
not statistically independent. A measure of correlations along the Markov chain is the
autocorrelation function

ΓO(t) = 〈〈O(sk)O(sk+t)〉〉 − 〈〈O(sk)〉〉〈〈O(sk+t)〉〉

where 〈〈· · · 〉〉 stands for the expectation value over an ensemble of infinitely many parallel
Markov chains.

(a) Show that for k � τ the autocorrelation function is given by

ΓO(t) =
∑

sk,...,sk+t

O(sk+t)T (sk+t ← sk+t−1) · · ·T (sk+1 ← sk)P (sk)O(sk)− 〈O〉2

where 〈O〉 is the expectation value with regard to P (s).

(b) Infer from P (s)O(s) = P (s)〈O〉 + f(s), f ∈ H0, that Γ(t) ∼ e−t/τ for large t,
and conclude that for |i − j| � τ the measured values O(si) and O(sj) become
statistically independent.

(c) Show that the statistical estimator

O =
1

N

N∑
k=1

O(sk)

has the variance

〈〈(O − 〈O〉)2〉〉 =
1

N2

N∑
i,j=1

ΓO(|i− j|) = σ2
0

2τO
N

+ O(N−2)

where the intrinsic variance σ2
0 and the integrated autocorrelation τO are defined by

σ2
0 = Γ(0) = 〈(O − 〈O〉)2〉, τO =

1

2
+
∞∑
t=1

Γ(t)

Γ(0)
.


