Hadronic Light-by-Light scattering in the anomalous magnetic moment of the muon

Harvey Meyer
J. Gutenberg University Mainz

Tau Lepton Conference, Amsterdam, 27 September 2018

Cluster of Excellence

Status of $(g-2)_{\mu}$ as a test of the Standard Model

New experiments: $\times 4$ improvement in accuracy \Longrightarrow theory effort needed:

- $a_{\mu}^{\exp }-a_{\mu}^{\mathrm{SM}} \approx 300 \cdot 10^{-11} ; \delta a_{\mu}^{\exp , \text { future }} \approx 16 \cdot 10^{-11}$.
- HVP $\left(=\mathrm{O}\left(\alpha^{2}\right)\right)$ target accuracy: $\lesssim 0.5 \%$
- HLbL $\left(=\mathrm{O}\left(\alpha^{3}\right)\right)$ target accuracy: $\lesssim 15 \%$.

Approaches to a_{μ}^{HLbL}

1. Model calculations: (the only approach until 2014)

- based on pole- and loop-contributions of hadron resonances

2. Dispersive representation: Bern approach; Mainz approach; Schwinger sum rule.

- identify and compute individual contributions
- determine/constrain the required input (transition form factors, $\gamma^{*} \gamma^{*} \rightarrow \pi \pi$ amplitudes, ...) dispersively

3. Experimental program: provide input for model \& dispersive approach, e.g. $\left(\pi^{0}, \eta, \eta^{\prime}\right) \rightarrow \gamma \gamma^{*}$ at virtualities $Q^{2} \lesssim 3 \mathrm{GeV}^{2}$; currently active program at BES-III see talk by Y. Guo
4. Lattice calculations:

- RBC-UKQCD T. Blum, N. Christ, T. Izubuchi, L. Jin, Ch. Lehner, ...
- Mainz N. Asmussen, A. Gérardin, J. Green, HM, A. Nyffeler, H. Wittig. .

This talk: how do the findings from different approaches fit together?

Models for $a_{\mu}^{\text {HLbL }}$

Contribution	BPP	HKS, HK	KN	MV	BP, MdRR	PdRV	N, JN
$\pi^{0}, \eta, \eta^{\prime}$	85 ± 13	82.7 ± 6.4	83 ± 12	114 ± 10	-	114 ± 13	99 ± 16
axial vectors	2.5 ± 1.0	1.7 ± 1.7	-	22 ± 5	-	15 ± 10	22 ± 5
scalars	-6.8 ± 2.0	-	-	-	-	-7 ± 7	-7 ± 2
π, K loops	-19 ± 13	-4.5 ± 8.1	-	-	-	-19 ± 19	-19 ± 13
π, K loops	-	-	-	0 ± 10	-	-	-
+subl. N_{C}	21 ± 3	9.7 ± 11.1	-	-	-	2.3 (c-quark)	21 ± 3
quark loops	21 ± 26	105 ± 26	116 ± 39				
Total	83 ± 32	89.6 ± 15.4	80 ± 40	136 ± 25	110 ± 40	$105 \pm$	

BPP = Bijnens, Pallante, Prades '95, '96, '02; HKS = Hayakawa, Kinoshita, Sanda '95, '96; HK = Hayakawa, Kinoshita '98, '02; KN = Knecht, AN '02; MV = Melnikov, Vainshtein '04; BP = Bijnens, Prades '07; MdRR = Miller, de Rafael, Roberts '07; PdRV = Prades, de Rafael, Vainshtein '09; $\mathrm{N}=\mathrm{AN}{ }^{\prime} 09, \mathrm{JN}=$ Jegerlehner, $\mathrm{AN}{ }^{\prime} 09$

Table from A. Nyffeler, PhiPsi 2017 conference

A recently updated estimate: NB. much smaller axial-vector contribution

$$
a_{\mu}^{\mathrm{HLbL}}=(103 \pm 29) \times 10^{-11} \quad \text { Jegerlehner 1809.07413 }
$$

Wisdom gained from model calculations Prades, de Rafael, Vainshtein 0901.0306

- heavy (charm) quark loop makes a small contribution

$$
a_{\mu}^{\mathrm{HLbL}}=\left(\frac{\alpha}{\pi}\right)^{3} N_{c} \mathcal{Q}_{c}^{4} c_{4} \frac{m_{\mu}^{2}}{m_{c}^{2}}, \quad c_{4} \approx 0.62
$$

- Light-quarks: (A) charged pion loop is negative \& quadratically divergent:

$$
a_{\mu}^{\mathrm{HLbL}} \stackrel{m_{\pi} \rightarrow 0}{=}\left(\frac{\alpha}{\pi}\right)^{3} c_{2} \frac{m_{\mu}^{2}}{m_{\pi}^{2}}, \quad c_{2} \approx-0.065
$$

(B) The neutral-pion exchange is positive, $\log ^{2}\left(m_{\pi}^{-1}\right)$ divergent:

Knecht, Nyffeler, Perrottet, de Rafael PRL88 (2002) 071802

$$
a_{\mu}^{\mathrm{HLbL}}=\left(\frac{\alpha}{\pi}\right)^{3} N_{c} \frac{m_{\mu}^{2}}{48 \pi^{2}\left(F_{\pi}^{2} / N_{c}\right)}\left[\log ^{2} \frac{m_{\rho}}{m_{\pi}}+\mathrm{O}\left(\log \frac{m_{\rho}}{m_{\pi}}\right)+\mathrm{O}(1)\right] .
$$

- For real-world quark masses: using form factors for the mesons is essential, and resonances up to 1.5 GeV can still be relevant \Rightarrow medium-energy QCD.
- Two closeby vector currents $V_{\mu}(x) V_{\nu}(0) \stackrel{\mathrm{OPE}}{\sim} \epsilon_{\mu \nu \rho \sigma} \frac{x_{\rho}}{\left(x^{2}\right)^{2}} A_{\sigma}+\ldots$ 'look like’ an axial current from a distance: doubly-virtual transition form factors of 0^{-+}and 1^{++}mesons only fall like $1 / Q^{2}$; but, coupling of axial-vector meson to two real photons forbidden by Yang-Landau theorem.

Test of 'model wisdom' via exact dispersive sum rules

$$
m_{\pi}=330 \mathrm{MeV}, 96 \cdot 48^{3}, a=0.063 \mathrm{fm}
$$

Lattice : $\Pi_{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}^{E}\left(P_{4} ; P_{1}, P_{2}\right) \equiv \int_{X_{1}, X_{2}, X_{4}} e^{-i \sum_{a} P_{a} \cdot X_{a}}\left\langle J_{\mu_{1}}\left(X_{1}\right) J_{\mu_{2}}\left(X_{2}\right) J_{\mu_{3}}(0) J_{\mu_{4}}\left(X_{4}\right)\right\rangle_{\mathrm{E}}$

$$
\mathcal{M}_{\mathrm{TT}}\left(-Q_{1}^{2},-Q_{2}^{2},-Q_{1} \cdot Q_{2}\right)=\frac{e^{4}}{4} \underbrace{R_{\mu_{1} \mu_{3}}^{E} R_{\mu_{2} \mu_{4}}^{E}}_{\text {projector }} \Pi_{\mu_{1} \mu_{3} \mu_{4} \mu_{2}}^{E}\left(-Q_{2} ;-Q_{1}, Q_{1}\right),
$$

Dispersive sum rule in $\nu=\frac{1}{2}\left(s+Q_{1}^{2}+Q_{2}^{2}\right)$: [Pascalutsa, Pauk, Vanderhaeghen (2012)]

$$
\mathcal{M}_{\mathrm{TT}}\left(q_{1}^{2}, q_{2}^{2}, \nu\right)-\mathcal{M}_{\mathrm{TT}}\left(q_{1}^{2}, q_{2}^{2}, 0\right)=\frac{2 \nu^{2}}{\pi} \int_{\nu_{0}}^{\infty} d \nu^{\prime} \frac{\sqrt{\nu^{\prime 2}-q_{1}^{2} q_{2}^{2}}}{\nu^{\prime}\left(\nu^{\prime 2}-\nu^{2}-i \epsilon\right)} \underbrace{\left(\sigma_{0}+\sigma_{2}\right)\left(\nu^{\prime}\right)}_{\sigma\left(\gamma^{*} \gamma^{*} \rightarrow \text { hadrons }\right)}
$$

J. Green et al. PRL115 222003 (2015); A. Gérardin et al. 1712.00421 (PRD).

Model for photon-photon fusion cross-section

Contribution of a narrow meson resonance to a $\gamma^{*} \gamma^{*} \rightarrow$ hadrons cross-section is

$$
\propto \delta\left(s-M^{2}\right) \times \Gamma_{\gamma \gamma} \times\left[\frac{F_{M \gamma^{*} \gamma^{*}}\left(Q_{1}^{2}, Q_{2}^{2}\right)}{F_{M \gamma^{*} \gamma^{*}}(0,0)}\right]^{2}
$$

- $\pi^{0} \rightarrow \gamma^{*} \gamma^{*}$ transition form factor $F_{\pi^{0} \gamma^{*} \gamma^{*}}$ determined in dedicated Lat. QCD calculation
- seven other TFFs were parametrized by $1 /\left(1+Q^{2} / M^{2}\right)^{k}(k=1,2)$ and the parameters M fitted.

Fitting all eight $\gamma^{*} \gamma^{*} \rightarrow \gamma^{*} \gamma^{*}$ forward amplitudes:

	$M_{T T}$	$M_{T T}^{\tau}$	$M_{T T}^{a}$	$M_{T L}$	$M_{L T}$	$M_{T L}^{\tau}$	$M_{T L}^{a}$	$M_{L L}$
Pseudoscalar	$\sigma_{0} / 2$	$-\sigma_{0}$	$\sigma_{0} / 2$	\times	\times	\times	\times	\times
Scalar	$\sigma_{0} / 2$	σ_{0}	$\sigma_{0} / 2$	\times	\times	$\tau_{T L}$	$\tau_{T L}$	$\sigma_{L L}$
Axial	$\sigma_{0} / 2$	$-\sigma_{0}$	$\sigma_{0} / 2$	$\sigma_{T L}$	$\sigma_{L T}$	$\tau_{T L}$	$-\tau_{L T}$	\times
Tensor	$\frac{\sigma_{0}+\sigma_{2}}{2}$	σ_{0}	$\frac{\sigma_{0}-\sigma_{2}}{2}$	$\sigma_{T L}$	$\sigma_{L T}$	$\tau_{T L}$	$\tau_{T L}^{a}$	$\sigma_{L L}$
Scalar QED	$\sigma_{T T}$	$\tau_{T T}$	$\tau_{T T}^{a}$	$\sigma_{T L}$	$\sigma_{L T}$	$\tau_{T L}$	$\tau_{T L}^{a}$	$\sigma_{L L}$

Forward LbL amplitudes: contributions of individual mesons

$N_{\mathrm{f}}=2, m_{\pi}=193 \mathrm{MeV}, 128 \cdot 64^{3}, a=0.063 \mathrm{fm}$, fully connected diagram, in units of 10^{-6}

Conclusion:

narrow resonances $+\pi^{+} \pi^{-}$model for $\sigma\left(\gamma^{*} \gamma^{*} \rightarrow\right.$ hadrons $)$
provides reasonable description of
$\mathcal{M}_{\text {forward }}\left(\gamma^{*} \gamma^{*} \rightarrow \gamma^{*} \gamma^{*}\right)$ from Lat.QCD.

Quark-line contractions

\square

First two classes of diagrams thought to be dominant, with a cancellation between them:

	Weight factor of:	fully connected	$(2,2)$ topology
SU(2) $)_{\mathrm{f}}:$	isovector-meson exchange	$34 / 9 \approx 3.78$	$-25 / 9 \approx-2.78$
$m_{s}=\infty$	isoscalar-meson exchange	0	1
$\operatorname{SU}(3)_{\mathrm{f}}:$	octet-meson exchange	3	-2
$m_{s}=m_{u d}$	singlet-meson exchange	0	1

Large- N_{c} argument by J. Bijnens, 1608.01454; $S U(3)_{\mathrm{f}}$ case in 1712.00421 ; Fig. by J. Green.

Contribution of $(2+2)$ disconnected diagrams to $\gamma^{*} \gamma^{*} \rightarrow \gamma^{*} \gamma^{*}$

$N_{\mathrm{f}}=2, m_{\pi}=193 \mathrm{MeV}, 128 \cdot 64^{3}, a=0.063 \mathrm{fm}$, in units of 10^{-6}

- large- N_{c} motivated prediction (no fit): $\left(\mathcal{M}_{\mathrm{TT}}^{\tau}\right.$ determined by $\left.\sigma_{\|}-\sigma_{\perp}\right)$

$$
\mathcal{M}_{\mathrm{TT}}^{\tau,(2,2)}=-\frac{25}{9} \mathcal{M}_{\mathrm{TT}}^{\tau,(2,2) \pi^{0}}+\mathcal{M}_{\mathrm{TT}}^{\tau,(2,2) \eta^{\prime}}
$$

- agreement at $\sim 30 \%$ level for $Q_{i}^{2} \lesssim 1.2 \mathrm{GeV}^{2}$.

Dispersive methods: the Bern approach

Full HLbL tensor:

$$
\Pi^{\mu \nu \lambda \sigma}\left(q_{1}, q_{2}, q_{3}\right)=i^{3} \int_{x, y, z} e^{-i\left(q_{1} x+q_{2} y+q_{3} z\right)}\langle 0| T\left\{j_{x}^{\mu} j_{y}^{\nu} j_{z}^{\lambda} j_{0}^{\sigma}\right\}|0\rangle=\sum_{i=1}^{54} T_{i}^{\mu \nu \lambda \sigma} \Pi_{i}
$$

e.g. $T_{1}^{\mu \nu \lambda \sigma}=\epsilon^{\mu \nu \alpha \beta} \epsilon^{\lambda \sigma \gamma \delta} q_{1 \alpha} q_{2 \beta} q_{3 \gamma}\left(q_{1}+q_{2}+q_{3}\right)_{\delta}$,
where the 54 structures are really seven combined with crossing symmetry.
Computing $(g-2)_{\mu}$ using the projection technique (directly at $q=0$):

$$
a_{\mu}^{\mathrm{HLLL}}=-e^{6} \int \frac{d^{4} q_{1}}{(2 \pi)^{4}} \frac{d^{4} q_{2}}{(2 \pi)^{4}} \frac{\sum_{i=1}^{12} \hat{T}_{i}\left(q_{1}, q_{2} ; p\right) \hat{\Pi}_{i}\left(q_{1}, q_{2},-q_{1}-q_{2}\right)}{q_{1}^{2} q_{2}^{2}\left(q_{1}+q_{2}\right)^{2}\left[\left(p+q_{1}\right)^{2}-m_{\mu}^{2}\right]\left[\left(p-q_{2}\right)^{2}-m_{\mu}^{2}\right]}
$$

with $\hat{\Pi}_{i}$ linear combinations of the Π_{i}.

Performing all "kinematic" integrals using Gegenbauer-polynomial technique after Wick rotation:

$$
a_{\mu}^{\mathrm{HLbL}}=\frac{2 \alpha^{3}}{48 \pi^{2}} \int_{0}^{\infty} d Q_{1}^{4} \int_{0}^{\infty} d Q_{2}^{4} \int_{-1}^{1} d \tau \sqrt{1-\tau^{2}} \sum_{i=1}^{12} T_{i}\left(Q_{1}, Q_{2}, \tau\right) \bar{\Pi}_{i}\left(Q_{1}, Q_{2}, \tau\right)
$$

Colangelo, Hoferichter, Procura, Stoffer (2015)

Dispersive methods (II)

(a)

(b)

(c)

- Charged-pion contributions: Colangelo et al. PRL118, 232001 (2017)

$$
a_{\mu}^{\pi \text { box }}+a_{\mu, J=0}^{\pi \pi, \pi-\mathrm{poleLHC}}=-24(1) \cdot 10^{-11}
$$

- rescattering effects in $\pi^{+} \pi^{-}$are being worked out for partial waves $\ell \leq 2$; first results for the s-wave (presented by Colangelo at ($g-2$) theory workshop 2018).
- Dispersive analysis of the $\pi^{0} \rightarrow \gamma^{*} \gamma^{*}$ transition form factor leads to $a_{\mu}^{\pi^{0}}=62.6_{-2.5}^{+3.0} \cdot 10^{-11} \quad$ Kubis et al. PRL121, 112002 (2018)
- Analysis of $\gamma^{*} \gamma^{*} \rightarrow \pi \pi$

Danilkin, Deineka \& Vanderhaeghen, $(g-2)$ theory workshop, Mainz 2018

Lattice calculation of $\mathcal{F}_{\pi^{0} \gamma^{*} \gamma^{*}}\left(Q_{1}^{2}, Q_{2}^{2}\right)$

$$
M_{\mu \nu}\left(p, q_{1}\right) \equiv i \int \mathrm{~d}^{4} x e^{i q_{1} x}\langle\Omega| T\left\{j_{\mu}(x) j_{\nu}(0)\right\}\left|\pi^{0}(p)\right\rangle=\epsilon_{\mu \nu \alpha \beta} q_{1}^{\alpha} q_{2}^{\beta} \mathcal{F}_{\pi \gamma^{*} \gamma^{*}}\left(q_{1}^{2}, q_{2}^{2}\right),
$$

Double-virtual

Single-virtual

Contribution to the $(g-2)_{\mu}$: using a conformal-mapping parametrization of $\mathcal{F}\left(Q_{1}^{2}, Q_{2}^{2}\right)$ in each virtuality, obtain

$$
\left.a_{\mu}^{\mathrm{HLbL}}\right|_{\pi^{0}}=(60.4 \pm 3.6) \cdot 10^{-11} \quad \text { (preliminary) }
$$

Compatible (and competitive) with the dispersive result of Kubis et al.
Gérardin et al 1607.08174 (PRD); $(g-2)$ Theory workshop, Mainz 2018.

Direct lattice calculation of HLbL in $(g-2)_{\mu}$

At first, this was thought of as a QED+QCD calculation [pioneered in Hayakawa et al., hep-lat/0509016].
Today's viewpoint: the calculation is considered a QCD four-point Green's function, to be integrated over with a weighting kernel which contains all the QED parts.

RBC-UKQCD: calculation of a_{μ}^{HLbL} using coordinate-space method in muon rest-frame; photon+muon propagators:

- either on the $L \times L \times L$ torus (QED ${ }_{L}$) (1510.07100-present)
- or in infinite volume $\left(\right.$ QED $\left._{\infty}\right)$ (1705.01067-present).
T. Blum, N. Christ, T. Izubuchi, L. Jin, Ch. Lehner, ...

Mainz:

- manifestly covariant QED ∞_{∞} coordinate-space approach, averaging over muon momentum using the Gegenbauer polynomial technique (1510.08384-present).
N. Asmussen, A. Gérardin, J. Green, HM, A. Nyffeler, ...

Coordinate-space approach to a_{μ}^{HLbL}, Mainz version

$$
\text { QED kernel } \overline{\mathcal{L}}_{[\rho, \sigma] ; \mu \nu \lambda}(x, y)
$$

$$
\begin{gathered}
a_{\mu}^{\mathrm{HLbL}}=\frac{m e^{6}}{3} \underbrace{\int d^{4} y}_{=2 \pi^{2}|y|^{3} d|y|}[\int d^{4} x \underbrace{\overline{\mathcal{L}}_{[\rho, \sigma] ; \mu \nu \lambda}(x, y)}_{\text {QED }} \underbrace{i \widehat{\Pi}_{\rho ; \mu \nu \lambda \sigma}(x, y)}_{=\text {QCD blob }}] . \\
i \widehat{\Pi}_{\rho ; \mu \nu \lambda \sigma}(x, y)=-\int d^{4} z z_{\rho}\left\langle j_{\mu}(x) j_{\nu}(y) j_{\sigma}(z) j_{\lambda}(0)\right\rangle .
\end{gathered}
$$

- $\overline{\mathcal{L}}_{[\rho, \sigma] ; \mu \nu \lambda}(x, y)$ computed in the continuum \& infinite-volume
- no power-law finite-volume effects \& only a $1 d$ integral to sample the integrand in $|y|$.
[Asmussen, Gérardin, Green, HM, Nyffeler 1510.08384, 1609.08454]

What to expect: contribution of the π^{0} to a_{μ}^{HLbL} (physical pion mass) $|y|$ |fm|

- Even more freedom in choosing best lattice implementation than in HVP.
- The form of the $|y|$-integrand depends on the precise QED kernel used: can perform subtractions (Blum et al. 1705.01067; $\mathcal{L} \rightarrow \mathcal{L}^{(2)}$), impose Bose symmetries on $\overline{\mathcal{L}}_{[\rho, \sigma] ; \mu \nu \lambda}(x, y)$ or add a longitudinal piece $\partial_{\mu}^{(x)} f_{\rho ; \nu \lambda \sigma}(x, y)$.

RBC-UKQCD: quark-connected diagram using QED $_{L}$

- $48^{3} \times 96, m_{\pi}=139 \mathrm{MeV}, a^{-1}=1.73 \mathrm{GeV}, L=5.47 \mathrm{fm}$
- $a_{\mu}^{\text {HLbL }}($ connected $)=(116.0 \pm 9.6) \times 10^{-11}$
T. Blum et al, PRL118 (2017) no.2, 022005

RBC-UKQCD: (2,2)-disconnected diagram using QED $_{L}$

$M=1024$ propagators/config M^{2} trick to reduce noise.

- $48^{3} \times 96, m_{\pi}=139 \mathrm{MeV}, a^{-1}=1.73 \mathrm{GeV}, L=5.47 \mathrm{fm}$
- $a_{\mu}^{\mathrm{HLbL}}((2,2))=(-62.5 \pm 8.0) \times 10^{-11}$
- together: $a_{\mu}^{\text {HLbL }}=(53.5 \pm 13.5) \cdot 10^{-11}$
T. Blum et al, PRL118 (2017) no.2, 022005

Comments [1712.00421]:

- Total is about a factor 2 lower than model estimates.
- This method has $\mathrm{O}\left(1 / L^{2}\right)$ finite-size effects. Or model missing something?
- Based on the model and large- N_{c}-based argument, one would expect $a_{\mu}^{\mathrm{HLbL}}((2,2)) \approx-150 \cdot 10^{-11}$, dominated by $\left(\pi^{0}, \eta, \eta^{\prime}\right)$ exchange.

Update by RBC-UKQCD: continuum, infinite-volume extrapol.

$$
F_{2}(a, L)=F_{2}\left(1-\frac{c_{1}}{\left(m_{\mu} L\right)^{2}}\right)\left(1-c_{2} a^{2}\right)
$$

Connected diagrams

Disconnected diagrams

$$
\begin{gathered}
a_{\mu}^{\mathrm{cHLbL}}=(28.2 \pm 4.0) \times 10^{-10} \quad a_{\mu}^{\mathrm{dHLbL}}=(-16.3 \pm 3.4) \times 10^{-10} \\
a_{\mu}^{\mathrm{HLbL}}=(11.9 \pm 5.3) \times 10^{-10}
\end{gathered}
$$

L. Jin @ Lattice 2018

My comment: the central value is much more in line with model expectation; uncertainty still large.

RBC-UKQCD first results for $(3,1)$ diagram topology

$24^{3} \times 64, m_{\pi}=141 \mathrm{MeV}, a^{-1}=1.015 \mathrm{GeV}$

- calculation on coarse lattice strongly suggests the $(3,1)$ topology is negligible.
L. Jin, private communication

Mainz: integrand of $a_{\mu}^{\text {cHLbL }}$ with $\mathcal{L}^{(2)}, m_{\pi}=340 \mathrm{MeV}, a=0.064 \mathrm{fm}, 96 \cdot 48^{3}$

- fully connected diagram only
- the π^{0} exchange with VMD form factor provides a decent approximation to the full QCD computation.

Mainz: pion mass dependence of $a_{\mu}^{\text {cHLbL }}$

- bands $=\pi^{0}$ contributions (band-width is difference between factor 3 and 34/9)
- upward trend for decreasing pion mass? needs more statistics.

Mainz: investigating systematic effects at $m_{\pi}=285 \mathrm{MeV}$

Check of finite-size effects

Check of discretization effects

- finite size and discretisation effects appear to be under control.

Mainz, A. Gérardin et al.

Conclusion

- Model approach to hadronic light-by-light scattering in $(g-2)_{\mu}$ is gradually getting superseded by lattice and dispersive approach.
- Significant progress in the Bern dispersive framework.
- Lattice QCD now has a well-established method to handle a_{μ}^{HLbL}.
- So far, lattice results (the Mainz forward scattering amplitudes and RBC-UKQCD $a_{\mu}^{\text {HLbL }}$ results extrapolated to infinite volume) are in line with model expectations.
- Could a_{μ}^{HLbL} explain the tension between the SM prediction and the experimental value of a_{μ} ? It does not look like it, but the effort to reduce uncertainties is worthwhile.

Backup Slides

Continuum tests: contribution of the π^{0} and lepton loop to $a_{\mu}^{\text {HLbL }}$

Integrand of the pion-pole contribution with VMD transition form factor.

Integrand of the lepton-loop contribution.

- Even more freedom in choosing best lattice implementation than in HVP.
- The form of the $|y|$-integrand depends on the precise QED kernel used: can perform subtractions (Blum et al. 1705.01067; $\mathcal{L} \rightarrow \mathcal{L}^{(2)}$), impose Bose symmetries on $\overline{\mathcal{L}}_{[\rho, \sigma] ; \mu \nu \lambda}(x, y)$ or add a longitudinal piece $\partial_{\mu}^{(x)} f_{\rho ; \nu \lambda \sigma}(x, y)$.

Hadronic vacuum polarization in x-space нм 1706.01139

QED kernel $H_{\mu \nu}(x)$

a_{μ}^{hvp}

$$
a_{\mu}^{\mathrm{hvp}}=\int d^{4} x H_{\mu \nu}(x)\left\langle j_{\mu}(x) j_{\nu}(0)\right\rangle_{\mathrm{QCD}},
$$

$$
j_{\mu}=\frac{2}{3} \bar{u} \gamma_{\mu} u-\frac{1}{3} \bar{d} \gamma_{\mu} d-\frac{1}{3} \bar{s} \gamma_{\mu} s+\ldots ; \quad H_{\mu \nu}(x)=-\delta_{\mu \nu} \mathcal{H}_{1}(|x|)+\frac{x_{\mu} x_{\nu}}{x^{2}} \mathcal{H}_{2}(|x|)
$$

a transverse tensor known analytically in terms of Meijer's functions,
$\mathcal{H}_{i}(|x|)=\frac{8 \alpha^{2}}{3 m_{\mu}^{2}} f_{i}\left(m_{\mu}|x|\right)$ and
$f_{2}(z)=\frac{G_{2,4}^{2,2}\left(z^{2} \left\lvert\, \begin{array}{c}\frac{7}{2}, 4 \\ 4,5,1,1\end{array}\right.\right)-G_{2,4}^{2,2}\left(z^{2} \left\lvert\, \begin{array}{c}\frac{7}{\frac{7}{2}, 4} \\ 4,0,2\end{array}\right.\right)}{8 \sqrt{\pi} z^{4}}$,
$f_{1}(z)=f_{2}(z)-\frac{3}{16 \sqrt{\pi}} \cdot\left[\begin{array}{l}\left.G_{3,5}^{2,3}\left(z^{2} \left\lvert\, \begin{array}{c}1, \frac{3}{2}, 2 \\ 2,3,-2,0,0\end{array}\right.\right)-G_{3,5}^{2,3}\left(z^{2} \left\lvert\, \begin{array}{c}1, \frac{3}{2}, 2 \\ 2,3,-1,-1,0\end{array}\right.\right)\right] . ~ . ~ . ~ . ~\end{array}\right.$

Explicit form of the QED kernel

$$
\overline{\mathcal{L}}_{[\rho, \sigma] ; \mu \nu \lambda}(x, y)=\sum_{A=\mathrm{I}, \mathrm{II}, \mathrm{III}} \mathcal{G}_{\delta[\rho \sigma] \mu \alpha \nu \beta \lambda}^{A} T_{\alpha \beta \delta}^{(A)}(x, y),
$$

with e.g.

$$
\begin{aligned}
& \mathcal{G}_{\delta[\rho \sigma] \mu \alpha \nu \beta \lambda}^{\mathrm{I}} \equiv \frac{1}{8} \operatorname{Tr}\left\{\left(\gamma_{\delta}\left[\gamma_{\rho}, \gamma_{\sigma}\right]+2\left(\delta_{\delta \sigma} \gamma_{\rho}-\delta_{\delta \rho} \gamma_{\sigma}\right)\right) \gamma_{\mu} \gamma_{\alpha} \gamma_{\nu} \gamma_{\beta} \gamma_{\lambda}\right\}, \\
& T_{\alpha \beta \delta}^{(\mathrm{I})}(x, y)=\partial_{\alpha}^{(x)}\left(\partial_{\beta}^{(x)}+\partial_{\beta}^{(y)}\right) V_{\delta}(x, y), \\
& T_{\alpha \beta \delta}^{(\mathrm{II})}(x, y)=m \partial_{\alpha}^{(x)}\left(T_{\beta \delta}(x, y)+\frac{1}{4} \delta_{\beta \delta} S(x, y)\right) \\
& T_{\alpha \beta \delta}^{(\mathrm{III})}(x, y)=m\left(\partial_{\beta}^{(x)}+\partial_{\beta}^{(y)}\right)\left(T_{\alpha \delta}(x, y)+\frac{1}{4} \delta_{\alpha \delta} S(x, y)\right), \\
& S(x, y)=\int_{u} G_{m_{\gamma}}(u-y)\langle J(\hat{\epsilon}, u) J(\hat{\epsilon}, x-u)\rangle_{\hat{\epsilon}}, \quad J(\hat{\epsilon}, y) \equiv \int_{u} G_{0}(y-u) e^{m \hat{\epsilon} \cdot u} G_{m}(u) \\
& V_{\delta}(x, y)=x_{\delta} \overline{\mathfrak{g}}^{(1)}(|x|, \hat{x} \cdot \hat{y},|y|)+y_{\delta} \overline{\mathfrak{g}}^{(2)}(|x|, \hat{x} \cdot \hat{y},|y|), \\
& T_{\alpha \beta}(x, y)=\left(x_{\alpha} x_{\beta}-\frac{x^{2}}{4} \delta_{\alpha \beta}\right) \overline{\mathfrak{l}}^{(1)}+\left(y_{\alpha} y_{\beta}-\frac{y^{2}}{4} \delta_{\alpha \beta}\right) \overline{\mathfrak{l}}^{(2)}+\left(x_{\alpha} y_{\beta}+y_{\alpha} x_{\beta}-\frac{x \cdot y}{2} \delta_{\alpha \beta}\right) \overline{\mathfrak{l}}^{(3)} \text {. }
\end{aligned}
$$

The QED kernel $\overline{\mathcal{L}}_{[\rho, \sigma] ; \mu \nu \lambda}(x, y)$ is parametrized by six weight functions.

$(g-2)_{\mu}:$ a reminder

$$
\boldsymbol{\mu}=g \mu_{B} \boldsymbol{s}, \quad \quad \mu_{B}=\frac{e}{2 m_{\mu}}
$$

- $g=2$ in Dirac's theory
- $a_{\mu} \equiv(g-2) / 2=F_{2}(0)=\frac{\alpha}{2 \pi}$ (Schwinger 1948)
- direct measurement (BNL): $a_{\mu}=(11659208.9 \pm 6.3) \cdot 10^{-10}$
- Standard Model prediction $a_{\mu}=(11659182.8 \pm 4.9) \cdot 10^{-10}$.
- $a_{\mu}^{\exp }-a_{\mu}^{\mathrm{th}}=(26.1 \pm 8.0) \cdot 10^{-10}$.

Numbers from 1105.3149 Hagiwara et al.

