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Outline

I Probing QCD spectral functions with the Backus-Gilbet method

I Vacuum spectral functions: numerical examples

I The pion quasiparticle in the low-temperature phase of QCD.
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Definitions

Euclidean-time vector correlators

Gµν(x0,k) =

∫
d3x e−ik·x

〈
jµ(x) jν(y)

〉
, jµ =

∑
f

Qf ψ̄fγ
µψf

I all diagonal components of Gµν are positive; spectral representation:

Gµν(x0,k)
µ=ν
=

∫ ∞
0

dω

2π
ρµν(ω,k)

cosh[ω(β/2− x0)]

sinh(βω/2)︸ ︷︷ ︸
T→0
 e−ω|x0|

.

I with appropriate subtractions, dispersive relation possible in momentum
space, e.g.

∆G̃µν(ωn,k, T ) ≡ G̃µν(ωn,k, T )−G̃µν(ωn,k, 0) =

∫ ∞
0

dω

π
ω

∆ρµν(ω,k, T )

ω2 + ω2
n

.
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The Backus-Gilbert method (1/2)

Linearity:

n∑
i=1

ci(ω̄)G(ti) =

∫ ∞
0

dω

2π
ρ(ω)

n∑
i=1

ci(ω̄)
cosh[ω(β/2− ti)]

sinh[ωβ/2]︸ ︷︷ ︸
δ̂(ω̄,ω)

I choose the coefficients ci(ω̄) so that the ‘resolution function’ δ̂(ω̄, ω) is as
narrowly peaked around a given frequency ω̄ as possible and normalized:∫ ∞

0

dω δ̂(ω̄, ω) = 1

Idea behind the Backus-Gilbert method, used in Robaina et al. PRD 92 (2015) 094510.

λ = 0.002, ω̄/T = 5
λ = 0.01, ω̄/T = 5
λ = 0.5, ω̄/T = 5
λ = 1, ω̄/T = 4

ω/T

T
δ̂(
ω̄
,ω

)

121086420
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0

Resolution function at ω̄ = 4T
for Nt = 24, ti/a = 5, . . . 12.

• Resolution only improves
slowly with increasing n

• Large, sign-alternating
coefficients ⇒ need for
ultra-precise input data.
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Backus-Gilbert method (2/2)

Choose f(ω) such that ρ(ω)
f(ω)

is expected to be slowly varying:

G(ti) =

∫ ∞
0

dω

2π

ρ(ω)

f(ω)

[
f(ω)

cosh[ω(β/2− ti)]
sinh[ωβ/2]

]
⇒

Then one can obtain model-independently a smoothened/smeared version of
the spectral function:

(Sfρ)(ω) ≡ f(ω)

∫ ∞
0

dω′ δf (ω, ω′) ρ(ω′) = f(ω)

n∑
i=1

ci(ω)G(ti).

If ρ(ω)
f(ω)

is constant, the BG method is exact. Further aspects:

I In practice: balance statistical uncertainty against resolution in frequency
space with a Lagrange multiplier λ;

I for instance, request highest possible resolution around a given ω for a
statistical precision of 5% or 10%.

I This is not a least-χ2 method: one should not expect∫∞
0

dω
2π

(Sfρ)(ω) cosh[ω(β/2−t)]
sinh[ωβ/2]

to give a good approximation to G(t) in the

sense of the χ2.
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Numerical tests at (virtually) T = 0

I Nf = 2 QCD ensemble O7 generated within CLS

I 128× 643, a = 0.0483(4)fm (1205.5380), mπ = 269(3)MeV

I T = 32MeV

At T = 0, G(x0) =
∫∞
ωthr

dω e−ωx0ρ(ω): ωthr is part of the prior knowledge.

Isovector correlators considered:
I

∫
d3x 〈Vi(x)Vi(0)〉 (set ωthr = 2mπ)

I
∫
d3x 〈Ai(x)Ai(0)〉 (set ωthr = 3mπ)

I
∫
d3x 〈Vi(x)Vi(0)−Ai(x)Ai(0)〉 (set ωthr = 2mπ)

I
∫
d3x 〈P (x)P (0)〉 (set ωthr = 0; or subtract pion contribution, and then set

ωthr = 3mπ)

Statistics: 490 configurations, 16 sources per configuration.

Study carried out by K. Zapp.
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Examples of realistic resolution functions

ωthr = 0, f0(ω) = tanh(βω/2); ωthr = 2mπ, f1(ω) = ω2

tanh(βω/2)
.
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I the resolution deteriorates as one moves away from the threshold.
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Free vacuum vector correlator in infinite volume

f1(ω) =
ω2

tanh(βω/2)
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f2(ω) =
ω2(1− 4m2

π/ω
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tanh(βω/2)

0.000

0.001

0.002

, L =
f2 , L =

2m 1.0 1.5 2 2.5 3.0
 [GeV]

0.99

1.00

1.01
/ f2

The phase-space factor (1− 4m2
π/ω

2)3/2

is recovered in a satifactory manner.

See Hansen et al. 1704.08993 for similar

studies.

(Sf2ρ)(ω) = ρ(ω) in this case.

Harvey Meyer Probing QCD spectral functions on the lattice



Free vacuum vector correlator in finite volume, mπL = 4.2

f1(ω) =
ω2

tanh(βω/2)
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Applied to the free finite-volume correlator, including the phase-space factor is
not necessarily beneficial.
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Vacuum vector correlator: study with the Gounaris-Sakurai model

f1(ω) =
ω2

tanh(βω/2)
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Black curve corresponds to 1
48π2 (1− 4m2

π/ω
2)3/2|FGS(ω)|2,

with FGS(ω) the Gounaris-Sakurai parametrization of the pion form factor.
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Finite-volume correlator

0.00

0.01

0.02 f1 GS/f1, L =
f1 GS/f1, m L=4.2
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 [GeV]
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Smoothened version of 1
48π2 (1− 4m2

π/ω
2)3/2|FGS(ω)|2.

Finite-volume correlator yields essentially the same smoothened spectral
function: at present, we are limited by the resolution, not by finite-size effects.
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Vacuum vector correlator: study with real lattice data (O7)

2mπ
mρ 1 1.5 2 2.5 3.0

ω̄ [GeV]
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I Blue curve = smoothened version of R1(s)

12π2 ,

where R1(s) = σ(e+e−→ (I=1) hadronic state)

4πα2/(3s)
.

I f1(ω) = ω2/tanh(βω/2).

Harvey Meyer Probing QCD spectral functions on the lattice



The (isovector) R-ratio: lattice (O7) vs. pheno

2m m 4m 1.5 2 2.5 3.0
 [GeV]
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v1(s) = 1
3R1(s) up to isospin breaking corr.

From Davier, Höcker, Zhang

DOI:10.1103/RevModPhys.78.1043

Blue curve = smoothened version of
R1(ω̄2)

12π2

R1(s) ≡ σ(e+e− → (I = 1) hadronic state)

4πα2/(3s)

Harvey Meyer Probing QCD spectral functions on the lattice



The 〈V V −AA〉 correlator: comparison to phenomenology

4m2
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f0(ω) = tanh(βω/2)

From Davier, Höcker, Zhang

DOI:10.1103/RevModPhys.78.1043

Blue curve = smoothened version of

v1(s)− a1(s).

The negative contribution of the a1 meson is spread over a wide frequency
interval in (Sf0ρV−A).
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The pion channels: 〈PP 〉

f1(ω) =
ω2

tanh(βω/2)
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Applying BG to the 〈PP 〉 correlator.

The pion delta-function gets ‘smeared’.

Applying BG after subtracting the pion
contribution, obtained as usual by
fitting the correlator at large Euclidean
time.
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Prospects for improvement
How the resolution improves with the nb. of data if precision is very high:

Other option: subtract the contribution of ππ states for ω < 4mπ using
Lellouch-Lüscher type relations, apply BG on the rest.

Fig. by D. Robaina from 1704.08993.
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Aspects of the low-T phase of Nf = 2 QCD
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The pion quasiparticle in the low-temperature phase

I Chiral symmetry is spontaneously broken for T < Tc: −〈ψ̄ψ〉 > 0.

I Goldstone theorem ⇒ a divergent spatial correlation length exists in the
limit m→ 0.

I somewhat less obvious: a massless real-time excitation exists:
the pion quasiparticle.

Static screening correlator:∫
dx1 dx2

∫ β

0

dx0 〈A3(x)A3(0)〉 = f2
πm

2
π ·

e−mπ|x3|

2mπ
+ . . . .

Time-dependent correlator:∫
d3x eip·x 〈A0(x)A0(0)〉 = f2

π(m2
π + p2) · cosh[ωp(β/2− x0)]

2ωp sinh[ωpβ/2]
+ . . . ,

Quasiparticle dispersion relation:

ωp = u
√
m2
π + p2 + . . .

[Son and Stephanov, PRD 66, 076011 (2002); D. Robaina et al. 1406.5602; 1506.05732.]
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Study at T ' 170MeV

I (Nf = 2) 24× 643 (O7) lattice; mπ(T = 0) ' 270 MeV; Tc ≈ 210 MeV;

I we find [ 〈ψ̄ψ〉T
〈ψ̄ψ〉0

]
GMOR

≡ (f2
πm

2
π)T

(f2
πm2

π)0
= 0.76(4)

i.e. a substantial reduction in the chiral condensate.

I Pion properties:

T = 0 : pion mass = 267(2)MeV

↙ ↘
T = 169MeV : quasiparticle mass = 223(4)MeV screening mass = 303(4)MeV.

I The ‘velocity’ u = ω0/mπ = 0.74(1) is quite far from unity.

Robaina et al. 1506.05732.
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How was it done? Extracting the pion quasiparticle mass

Important point:

pion dominates Euclidean two-point function of A0 and of P at x0 = β/2:

PCAC relation :
∂2

∂x2
0

∫
d3x〈A0(x)A0(0)〉 = −4m2

q

∫
d3x〈P (x)P (0)〉

⇒ ω0 =

[
−4m2

q

∫
d3x〈P (x)P (0)〉∫
d3x〈A0(x)A0(0)〉

]1/2

.
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Testing the prediction for the residue of the pion pole

Another option to determine ω0: solve

1

f2
πm2

π

∫
d3x 〈A0(x)A0(0)〉 =

cosh[ω0(β/2− x0)]

2ω0 sinh[ω0β/2]
+ . . .

for ω0.

If the chiral effective theory is consistent, the same result should come out as
on the previous slide.

NB. Here we only rely on the pion dominating the A0 correlator, not the P
correlator; on the other hand, we rely on the residue being correctly predicted
by the chiral effective theory.

Within two standard deviations, the same result is indeed obtained.

1406.5602; 1506.05732.
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Lighter pion mass, T ' 150MeV

Very similar results obtained on a 20× 643 (G8) lattice at smaller pion mass,
mπ(T = 0) = 185 MeV:

I ω0 = 155(5) MeV

I u = 0.78(3).

I Also, ChEFT predictions consistent with lattice data up to |p| ≈ 300 MeV.

I At finite p, we have used either the BG method or an explicit fit ansatz for
the spectral function.

K. Zapp et al. 1801.00298.
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Test of the Gell-Mann–Oakes–Renner relation at T ' 150MeV

16× 483, mπ(T = 0) ≈ 305 and 217 MeV

Current algebra prediction: (ω2
0f

t 2
π )T = (m2

πf
2
π)T = −mq〈ψ̄ψ〉T

Both the pion screening mass and the pion quasiparticle mass follow the
GMOR relation at mπ . 300 MeV at T ≈ 150 MeV.

K. Zapp et al. 1801.00298; T = 0 result from Engel et al. 1406.4987.
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The 〈ViVi −AiAi〉 correlator at p = 0

Recall the vacuum result (O7, mπ = 269 MeV):

4m2
π 0.5 1.0 1.5 2 2.5 3.0 3.5

ω̄2 [GeV2]

0.0

0.2

0.4

0.6

0.8

1.0

1.2 4π2

ω2
Sf0

ρV−A

I this difference of spectral functions is an order parameter for chiral
symmetry

I expect vanishing difference at T > Tc, up to small O(m2
q) effects.
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ChPT prediction for 〈ViVi −AiAi〉 at low temperature

In the chiral limit and at low |p|, T � fπ:

ρV (ω,p, T )− ρA(ω,p, T ) = (1− 2ε)[ρV (ω,p, 0)− ρA(ω,p, 0)], ε =
T 2

6f2
π

.

This can be tested on the lattice: if this relation holds literally, the ratio of the
thermal to the ‘reconstructed’ correlator should be constant and equal to
(1− 2ε).

‘Reconstructed’ correlator = the Euclidean correlator that would be obtained at
finite T if the spectral function remained the same as at T = 0:

Grec
V−A(x0,p, T ) =

∑
n∈Z

GV−A(x0 +
n

T
,p, 0).

Dey, Eletsky, Ioffe, PLB 252, 620 (1990); K. Zapp et al 1801.00298.
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Lattice results on 〈ViVi −AiAi〉 at T = 170MeV 24× 643 (O7)

Reconstructed correlator Thermal correlator
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Lattice results on 〈ViVi −AiAi〉 at T = 170MeV 24× 643 (O7)

I the ratio is indeed quite flat;

I reduction by a factor 0.60 at the largest accessible Euclidean times;

I chiral symmetry restoration is quite advanced in this observable; also seen
in screening vector and axial-vector masses;

I at x0 ≤ β/4, cutoff effects need to be studied carefully.

Brandt et al 1608.06882; 1801.00298
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Conclusion

I The Backus-Gilbert method allows for a model-independent probing of
QCD spectral functions from lattice correlators, albeit at rather low
frequency resolution.

I The method is robust against finite-size effects.

I It is systematically improvable, at the cost of having very high accuracy
correlators.

Summarizing our findings at T = 170 MeV compared to T = 0, for
mπ(T = 0) ' 270 MeV:

( ω2
0︸︷︷︸

reduced

f t 2
π︸︷︷︸

unchanged

)T = ( m2
π︸︷︷︸

increased

f2
π︸︷︷︸

much reduced

)T = −mq 〈ψ̄ψ〉T︸ ︷︷ ︸
reduced by ∼3/4

The thermal width of the pion, however, presently remains numerically
inaccessible. . .
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Backup slides

Harvey Meyer Probing QCD spectral functions on the lattice



A dispersion relation for a Euclidean correlator at zero virtuality

I Let σ(ω) ≡ ρT (ω, |k| = ω) be the relevant spectral function proportional
to the photon emission rate;

I let HE(ωn) ≡ GE(ωn, k = iωn) the momentum-space Euclidean correlator
with Matsubara frequency ωn and imaginary spatial momentum k = iωn;

I once-subtracted dispersion relation: (σ(ω) ∼ ω1/2 at weak coupling)

HE(ωn)−HE(ωr) =

∫ ∞
0

dω

π
ω σ(ω)

[ 1

ω2 + ω2
n

− 1

ω2 + ω2
r

]
.
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Representation through non-static screening masses

G̃E(ωr, x3) = −2

∫ β

0

dx0 e
iωrx0

∫
dx1dx2 〈J1(x)J1(0)〉 =

∑
n

|A(r)
n |2e−E

(r)
n |x3|

⇒ HE(ωr)︸ ︷︷ ︸
=O(g2)

≡
∫ ∞
−∞

dx3 G̃E(ωr, x3) eωrx3 = 2ω2
r

∞∑
n=0

|An|2︸ ︷︷ ︸
=O(g4)

1

E
(r)
n (E

(r)
n

2 − ω2
r)︸ ︷︷ ︸

=O(g−2)

.

This helps explain the connection observed in [Brandt et al, 1404.2404] between
non-static screening masses and the LPM-resummation contributions to the
photon emission rate [Aurenche et al, hep-ph/0211036].

In lattice regularization, Lorentz symmetry is absent ⇒ HE(ωr) does not
vanish in vacuum as it does in the continuum. Explicitly subtracting the in
vacuo HE(ωr) from the thermal HE(ωr) may be necessary.
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Sketch of the (standard) derivation of the dispersion relation

GR(ω, k) = i(δil − kikl
k2 )

∫
d4x eiK·xθ(x0)

〈
[ji(x), jl(0)]

〉
. But

[jµ(x), jν(0)] = 0 for x2 < 0,

⇒ the retarded correlator HR(ω) ≡ GR(ω, k = ω) at lightlike momentum is
analytic for Im (ω) > 0. Similarly, the advanced correlator HA(ω) is analytic
for Im (ω) < 0.

Define the function H(ω) =

{
HR(ω) Im (ω) > 0
HA(ω) Im (ω) < 0

.

It is analytic everywhere, except for a discontinuity on the real axis:

H(ω + iε)−H(ω − iε) = HR(ω)−HA(ω) = iσ(ω),

Write a Cauchy contour-integral representation (using two half-circles) of H(ω)
just above the real axis, where it coincides with HR(ω):

HR(ω) = HR(ωr) +

∫ ∞
−∞

dω′

2π
σ(ω′)

[ 1

ω′ − ω − iε −
1

ω′ − ωr − iε

]
.

The dispersion relation for the Euclidean correlator follows from the
observation GE(ωn, k

2) = GR(iωn, k
2), n > 0.
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