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Lattice QCD is a regularization of QCD. . .

I maintaining an exact form of SU(3) gauge symmetry,

I using compact gauge variables ( no gauge fixing required),

I breaking continuous space-time symmetries,

I formulated in the Euclidean-space path integral representation,

I well-suited for non-perturbative treatment via importance-sampling
simulation techniques.

A good place to find the state-of-the-art as well as pointers to the literature:
the latest FLAG report 1902.08191. Examples:
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Space-time as a four-dimensional lattice
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Pµν

Uµ

µ

ν

Gluons: Uµ(x) = eiag0Aµ(x) ∈ SU(3)
‘link variables’

Quarks: ψ(x) ‘on site’, Grassmann;
discretized Dirac operator D[U]

Imaginary-time path-integral:

ZQCD =

∫
DU Dψ̄Dψ e−SE [U,ψ̄,ψ] =

∫
DU det(D[U ] +m)e−Sgauge[U ]

I Quark correlation functions are expressed in terms of quark propagators;
however, these propagators must be computed in a non-perturbative
SU(3) gauge field background.

I ⇒ Most of the computing time goes into solving the discretized Dirac
equation in a background field.

I Representative samples of the gauge fields are generated, QCD
expectation values obtained as averages over these configurations.

I Recently, idea of the master field [M. Lüscher]: with very large lattices,
“more volume= more statistics”.
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Outline

I Nucleon structure for neutrino and WIMP detection

I Thermal QCD spectral functions for the production of sterile neutrinos

I Axions: the topological susceptibility in the quark-gluon plasma phase.
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Nucleon structure for neutrino and WIMP detection

I will discuss

I isovector axial form factor: relevant for neutrino detection

I scalar matrix elements: relevant for the direct detection of WIMPs.
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Calculating the Nucleon Mass on the Lattice

Use an interpolating field such as

χ(x) = εabc
(
uTa(x)Cγ5d

b(x)
)
uc(x)

Two-point function:

C2(τ,p) = Γβα a3
∑
x

eip·x 〈0|χα(x)χ̄β(0)|0〉

τ

p p

τ=0 quark action quadratic ⇒ Wick contractions,
〈ψ(y)ψ̄(x)〉 = (D[U ])−1(y, x)

Spectral representation: 〈0|χ(0)|N, p, s〉 = ZN
√

M
Ep

u(p, s)

C2(τ,p)
τ→∞

=
Z2
N

2Ep
e−Epτ Tr {Γ(−i/p+M)}+ . . .
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Nucleon form factor calculations

Let Ψ be an interpolating field for the nucleon, 〈N |Ψ|vac〉 6= 0:

C2(t,p) =
∑
x

eip·xΓβα 〈Ψα(t,x)Ψβ(0)〉

C3(t, ts, q) =
∑
x,y

eiq·yΓβα 〈Ψα(ts,x)J(t,y)Ψβ(0)〉

Calculation of charges (q = 0): form the ratio
R(t, ts,0) = C3(t, ts,0)/C2(ts,0) for t ' ts/2 −→∞.

gu−dA gu−dS

K. Ottnad et al. (Mainz lattice group) 1809.10638
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Status: the isovector axial charge of the nucleon

I FLAG lattice average for Nf = 2 + 1 QCD: gu−dA = 1.254(0.016)(0.030)
J. Liang et al, 1806.08366 (PRD).

I PDG average: gu−dA = 1.2724± 0.0023
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The scalar matrix elements of the nucleon

σπN = mud 〈N |ūu+ d̄d|N〉
σs = ms 〈N |s̄s|N〉
σc = mc 〈N |c̄c|N〉.

Determine the spin-independent interaction of WIMPs with the nucleon.

Due to the heavy mass of the WIMP, the momentum transfer is very small ⇒
only need to know the forward matrix element.

Technically, the matrix elements above require the calculation of
quark-disconnected diagrams, which are computationally very demanding.

NB. There are recent lattice calculations of axial, scalar and tensor matrix
elements in light nuclei at heavy quark masses (mπ = 800 MeV). Observation:
the nuclear interactions/correlations can affect the charge up to the ∼ 10%
level. [NPLQCD lattice collaboration, 1712.03221 (PRL)]
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Results for the sigma-terms

Light quarks: FLAG average for Nf = 2 + 1 QCD:

σπN = 39.7(3.6)MeV

Most recent dispersive analysis: Hoferichter, de Elvira, Kubis, Meissner, 1506.04142 (PRL)

σπN = (59.1± 3.5)MeV.

This represents a tension of 3.9 standard deviations.

Strangeness:
σs = 52.9(7.0)MeV

Charm: Using the heavy-quark expansion, [Hill & Solon, 1409.8290 (PRD)]

σc = 68.5± 2.8MeV.
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Axial form factor of the nucleon

I example of a calculation on an Nf = 2 643 × 128 lattice, mπ ' 260 MeV,
a = 0.050 fm;

I the systematics of extracting the ground-state matrix element is not
negligible;

I rA = 0.60(7) fm; cf. pheno. dipole fit: rpheno
A = 0.666(14) fm.

Mainz lattice group 1705.06186, (Int.J.Mod.Phys)
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Axial form factor of the nucleon (2)

I turquoise band = dipole fit to expt data with dipole mass
MA = 1.026(21) GeV;

I the green band represents the more recent MiniBoone estimate (from
carbon data), MA = 1.35(17) GeV;

I the form factor calculated on the lattice is more in line with the latter:
rA = 0.48(4) fm or MA = 1.42(12) GeV.

PNDME collaboration, 1705.06834 (PRD).
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Production of keV-mass sterile neutrinos in the early universe:
T ∼ 200 MeV

The differential production rate of sterile neutrinos per unit volume is a linear
combination of

pW = 2, pZ = 1/2, ∆(P,m) = P/+m, E1 =
√

(q + r)2 +m2
lH

mlW = mlα = mass of the charged lepton of generation α

mlZ = mνα ' 0 = mass of the MSM active neutrino

2ImΣ0 = Γν = the active neutrino damping rate

ρHµν are QCD thermal spectral functions. Assuming SU(3)flavor symmetry:

ρHµν =
1

4
(|Vud|2 + |Vus|2)

(
ρV,8µν + ρA,8µν

)
ρZµν =

2

3

[
(1− 2 sin2 θW )2ρV,8µν + ρA,8µν

]
+

1

36

[
ρV,0µν + ρA,0µν

]
.

Asaka, Laine, Shaposhnikov hep-ph/0605209 (JHEP).
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Production of photons

The differential photon rate per unit volume of quark-gluon plasma:

dΓ(k) = e2 d3k

(2π)3 2k

−ρµµ(ω,k)

eβk − 1

I ρµν(ω,k) is the thermal spectral function of the electromagnetic current
(= ρV,8µν in the notation of the previous slide).

I this rate is measured in heavy-ion collisions, integrated over the space-time
history of the ‘fireball’, assuming local thermal equilibrium is reached
[see e.g. Paquet et al, 1509.06738 (PRC)].

I can we first test our ability to calculate dΓ(k) on the lattice?

Ghiglieri et al. 1604.07544; Brandt et al. 1710.07050.
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Definitions

Euclidean-time vector correlators ({γµ, γν} = 2gµν = 2diag(1,−1,−1,−1)),

Gµν(x0,k) =

∫
d3x e−ik·x

〈
jµ(x) jν(y)

〉
, jµ =

∑
f

Qf ψ̄fγ
µψf

I all diagonal components of Gµν are positive; spectral representation:

Gµν(x0,k)
µ=ν
=

∫ ∞
0

dω

2π
ρµν(ω,k)

cosh[ω(β/2− x0)]

sinh(βω/2)
.

I from current conservation: ω2ρ00(ω, k) = kikjρij(ω, k).

I consider the linear combination

ρ(ω, k, λ) = (δij − k̂ik̂j)ρij + λ (k̂ik̂jρij − ρ00) k ≡ |k|, k̂i = ki/k,

I The differential photon rate per unit volume of plasma:

dΓλ(k) = e2 d3k

(2π)3 2k

ρ(k, k, λ)

eβk − 1
is independent of λ.
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The case of non-interacting fermions

Spectral function Euclidean correlator with λ = −2
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I determining the spectral function from the Eucl. correlator is a numerically
ill-posed problem.
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Qualitative form of the spectral functions: weak and strong coupling
Spatial momentum k = πT :

ρT

AdS/CFT

Free quarks

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

ω / (2πT)

(-
2/
χ
s
)
ρ
T
(ω
,k

=
π
T
)
/
ta
n
h
[ω

β
/2
]

ρT − ρL
AdS/CFT

Free quarks

0.0 0.5 1.0 1.5 2.0 2.5

0

1

2

3

4

ω / (2πT)

(-
2/
χ
s
)(
ρ
T
-
ρ
L
)(
ω
,k

=
π
T
)
/
ta
n
h
[ω

β
/2
]

Spatial momentum k = πT/2:
At strong coupling, hydro works:

−2(ρT − ρL)(ω, k)/ω ≈ 4χsDk
2

ω2 + (Dk2)2
,

Refs: hep-th/0607237 and 1310.0164.

AdS/CFT

Free quarks

Hydro, D=(2πT)-1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0
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ω / (2πT)

(-
2/
χ
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)(
ρ
T
-
ρ
L
)(
ω
,k
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π
T
/2
)
/
ta
n
h
[ω

β
/2
]
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Lattice set-up with Nf = 2 O(a)-improved Wilson fermions

T (MeV) T/Tc βLAT β/a L/a mMS(2 GeV) (MeV) Nmeas

250 1.2 5.3 12 48 12 8256
” ” 5.5 16 64 ” 4880
” ” 5.83 24 96 ” 9600

500 2.4 6.04 16 64 ” 8064

I enables continuum limit at T = 250 MeV
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−5
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√
8t ≈ T/2

β/a = 12

to
po
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gi

ca
lc

ha
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e

β/a = 16

molecular dynamics units

β/a = 24

1.90

1.95

1e 4
ll

1.50

1.55

1e 4
lc_site

1.50

1.55

1e 4
lc_link

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
|Q|

1.20

1.25

1e 4
cc

I only weak dependence of observable on topological charge
I impact of long autocorrelation time on vector correlator under control.
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Continuum limit using tree-level improvement: k = πT
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I Coarsest ensemble Nt = 12 is not included in the continuum extrapolation.

I In the subsequent analysis, we use the continuum-extrapolated correlator
at x0 ≥ β/4.
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Can the lattice distinguish a weak- from a strong-coupling ρ(ω, k)?

In the “transverse minus longitudinal” channel, consider the ratio

R(x0, k) ≡ 16π

(β − 2x0)2k2

[ G(x0, k)

G(β/2, k)
− 1
]

This observable differs by a factor ∼ 1.5 between the extreme cases of
AdS/CFT and non-interacting quarks.

The continuum-extrapolated
data lies between AdS/CFT
and the free-quark prediction.
Can the O(αs) corrections
account for the lattice data?

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1

R
(x

0,
k)

kβ/2π

free quarks
strong coupling

continuum T ≈ 250 MeV, x0/β = 7/24
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Estimating the spectral function

Fit ansatz: (consistent with known theory constraints; impose exact sum rule∫∞
0
dω ωρ(ω, k) = 0)

ρ(ω, k)

tanh[ωβ/2]
=

A(1 +Bω2)

[(ω − ω0)2 + b2][(ω + ω0)2 + b2][ω2 + a2]
,

The lattice data is well described by a spectral function with a large photon
production rate.

Talk by A. Toniato at this week’s Theory workshop
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Axions as dark matter candidate

Assume the axions form all of dark matter, and the phase of the Peccei-Quinn
field φ starts out spatially random on distance scales larger than H−1:
(post-inflationary scenario)

I the larger fa, the more axions are produced ⇒ constrain the possible
values of fa,

I and hence the axion mass: m2
a = χt/f

2
a , where χt is the topological

susceptibility of QCD at vanishing temperature.

I To calculate the relation between the final axion matter density and fa,
the thermal QCD topological susceptibility χt(T ) is needed for
540 < T/MeV < 1150.

I Using lattice result for χt(T ) on the next slide, the result of a
sophisticated classical field theory calculation yields ma = 26.2± 3.4µeV.

1709.09466 G.D. Moore
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Currently most comprehensive lattice results on χt(T )
Difficulties:

I simulations can get stuck in fixed topological sectors;

I the topological susceptibility becomes extremely small at high T , ∼ T−8.6

Borsanyi et al, doi:10.1038/nature20115
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Conclusion

I There is a significant number of activities in the lattice community related
to the theme of dark matter.

I In several cases, the required QCD quantity cannot realistically be
obtained from experimental information,

I but cross-checks with experiment for related quantities that can be
measured are made.
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A sum rule for ρ ≡ ρλ=−2

i. Lorentz invariance and transversity ⇒ G̃E(ωn, k) = 0 in vacuum and UV
finite at T > 0

ii. OPE: from power-counting one expects G̃E(ωn, k) ∼ 〈O4〉
ω2
n

Furthermore, charge conservation demands G̃E(ωn, k)→ 0 as k → 0 and
ωn 6= 0, so actually

G̃E(ωn, k) ∼ k2〈O4〉
ω4
n

iii. From the dispersive representation:

G̃E(ωn, k) =

∫ ∞
0

dω

π
ω
ρ(ω, k)

ω2 + ω2
n

ωn→∞−→ 1

πω2
n

∫ ∞
0

dω ω ρ(ω, k)

The two expressions are only compatible if the super-convergent sum rule∫∞
0

dω ωρ(ω, k) = 0

holds.
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