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Generalization of quantization condition to relativistic QFT

Lüscher showed (1986,1990), to all order in perturbation theory, that the
spectrum is still determined by a quantization condition of the type
det[A− BM] = 0.

For the A1 and T1 irreps (rest frame), neglecting scattering phase for ` ≥ 4 or
` ≥ 3 respectively,

δ`(k) + φ(q) = nπ, n ∈ Z, q ≡ kL
2π
.

Basis of current lattice applications (including moving frames) in
• ρ, K∗ channels
• a0, f0 channels.



Partial wave expansion of the scattering amplitude

Let W be the center-of-mass energy: W = 2
√

k2 + m2
π.

Partial wave expansion of scattering amplitude for spinless particles:

M = 16πW
∑
`

(2`+ 1)P`(cos θ)t`,

t`(k) =
1

2ik
(η`(k)e2iδ`(k) − 1).

η` is the inelasticity, δ` the scattering phase.



One derivation of LL type relations

In particular, the differential

∆δ`(k) = −F`(k, L)
∆k
k

of the equation δ`(k) + φ(q) = nπ still relates a change in the particle
interaction and the spectrum on the torus.

Strategy is the same as in the non-relativistic case:

δ`
(L)→ En(L)

↓ ∆V ↓ ∆V

δ` + ∆δ`
(L)→ En(L) + ∆En(L).



One derivation of LL type relations (II) [Lellouch, Lüscher 2000]

K → ππ weak decay: the perturbing Hamiltonian is provided by the weak
interaction:

V =

∫
d3x Lw(x).

Since both initial and final states are both purely hadronic, energy and
momentum must match for the transition to be at physical kinematics.

Box size tuned so that En = mK for one of the discrete two-pion states.

The degeneracy between the kaon and two-pion states is lifted by the weak
interaction. To linear order:

E = mK ± |M|, M ≡L 〈ππ|V|K〉; ∆k =
mK

4kπ
|M|.



One derivation of LL type relations (III)

On the other hand, in infinite volume, the ππ phase shift is modified by the
resonant production of a kaon. It is formally 2nd order in the weak interaction,
but enhanced by the proximity to the kaon pole: i

p2−m2
K

= i
2mK∆p0 ,

for p = 0 and p0 = MK + ∆p0. Evaluate this for ∆p0 = ±|M| ⇒

i∆M = 〈(ππ)out|Lw|K〉
i

2MK(±|M|) 〈K|Lw|(ππ)in〉 = (Aeiδ0 )
i

2MK(±|M|) (−Aeiδ0 )

∆M =
i 16πMK

k
e2iδ∆δ0 ⇒ ∆δ0(k) = ∓ kπ|A|2

32πm2
K |M|

+ . . .

Inserting the expressions for ∆k and for ∆δ0 into , Lellouch & Lüscher obtain

|A|2 = 8πF0(k, L)

(
mK

kπ

)3

|M(L)|2, Γ =
kπ

16πm2
K
|A|2.

K



Pion form factor Fπ(q2) (I)

Spacelike (q2 < 0) Timelike (q2 > 0)

〈π+|j|π+〉 = (p + p′)Fπ(q2) out〈π+π−|j|0〉 = (p+ − p−)Fπ(q2)

e−π+ → e−π+ e+e− → π+π−

|Fπ(q2)|2 phase of Fπ(q2)

δ1 = π+π−-scattering phase (Watson thm)
[Figs. from Guerrero & Pich, hep-ph/9707347]



The pion form factor (II)

Spacelike pion form factor
Lattice data
[B.B. Brandt, A. Jüttner, H. Wittig 1301.3513]

Timelike pion form factor:

q = p+ + p−, k2 = q2

4 −M2
π

[plot from Jegerlehner & Nyffeler 0902.3360]



From discrete states on the torus to the timelike pion form factor

 0

 2

 4

 6

 8

 10

 12

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

R
1
(ω

2
)

ω [GeV]

ρ(s) =
1

48π2

(
1− 4m2

π/s
)3/2
|Fπ(s)|2, s < (4Mπ)2

|Fπ(s)|2 =
(

qφ′(q)+k ∂δ1(k)
∂k

) 3πs
2k5L3

∣∣∣∣L〈ππ ∣∣∣∣∫ dx jz(x)

∣∣∣∣ 0〉∣∣∣∣2 .
HM 1105.1892; figure: model for Fπ(s).



A derivation

Task: relate L〈ππ|j|0〉 to out〈ππ|j|0〉 at a given c.m. energy E.

Idea: invoke a massive vector particle with mass M = E which mixes with the
two-pion state in the box.

V = −
∫

d3x ja · Aa, A(x) =
∑

k

3∑
σ=1

eσ(k)√
2EkL3

(ab
k,σeik·x + ab†

k,σe−ik·x)

In the box:

E±ππ = M ± |A|, A =
−e√
2M

Aψ, L3/2〈ψa
σ |̂jb

σ′(x)|0〉 = δabδσσ′Aψ.

Infinite volume: the vector particle appears as a resonance in ππ scatt.,

∆M(ππ → ππ) = 〈(πp′π−p′)
b, out|jc|0〉 · e2δcd

q2 −M2 · 〈0|j
d|(πpπ−p)

a, in〉.

Corresponding change in the scattering phase:

∆δ1 = ∓ e2

12πM|A| |Fπ|
2 k3

π

Eππ
⇒ insert into ∆δ`(k) = −F`(k, L)

∆k
k
.



Example of a lattice calculation of Fπ(q2)

From 1511.03251 J. Bulava, B. Hörz et al.; see also 1412.6319 X. Feng et al. and the recent

1710.03529 F. Erben et al.



(g − 2)µ: a reminder

µ = gµBs, µB =
e

2mµ

• g = 2 in Dirac’s theory

• aµ ≡ (g − 2)/2 = F2(0) = α
2π (Schwinger 1948)

• direct measurement (BNL): aµ = (11659208.9 ± 6.3) · 10−10

• Standard Model prediction aµ = (11659182.8 ± 4.9) · 10−10.

• aexp
µ − ath

µ = (26.1 ± 8.0) · 10−10.

Numbers from 1105.3149 Hagiwara et al.



(g − 2)µ: history and near future

Fig. from Jegerlehner 1705.00263

Hadronic vacuum polarisation (HVP)

Hadronic light-by-light scattering (HLbL)

New experiments: ×4 improvement in accuracy =⇒ theory effort needed:
• HVP target accuracy: . 0.5%

• HLbL target accuracy: 10%.



HVP: definitions (Euclidean space)

• primary object on the lattice: Gµν(x) = 〈jµ(x)jν(0)〉.

• polarization tensor: Πµν(Q) ≡
∫

d4x eiQ·xGµν(x).

• O(4) invariance and current conservation ∂µjµ = 0:

Πµν(Q) =
(
QµQν − δµνQ2)Π(Q2).

• Spectral representation: ρ(s) = R(s)
12π2 , R(s) ≡ σ(e+e−→hadrons)

4πα(s)2/(3s) ,

Π(Q2)−Π(0) = Q2
∫ ∞

4m2
π

ds
ρ(s)

s(s + Q2)
.

•

ahvp
µ = 4α2

∫ ∞
0

dQ2 K(Q2; m2
µ) [Π(Q2)−Π(0)]

• In the limit mµ → 0: limmµ→0
ahvp
µ

m2
µ

= 4
3α

2Π′(Q2 = 0).

Lautrup, Peterman & de Rafael Phys.Rept 3 (1972) 193; Blum hep-lat/0212018



The time-momentum representation (TMR)
• mixed-representation Euclidean correlator: (natural on the lattice)

GTMR(x0) = −1
3

3∑
k=1

∫
d3x Gkk(x),

• the spectral representation:

GTMR(x0) =

∫ ∞
0

dω ω2ρ(ω2) e−ω|x0|, x0 6= 0.

• Finally, the quantity ahvp
µ is given by

ahvp
µ =

(α
π

)2
∫ ∞

0
dx0 G(x0) f̃ (x0),

f̃ (x0) =
2π2

m2
µ

[
− 2 + 8γE +

4
x̂2

0
+ x̂2

0 −
8
x̂0

K1(2x̂0)

+8 log(x̂0) + G2,1
1,3

(
x̂2

0|
3
2

0, 1, 1
2

)]
where x̂0 = mµx0, γE = 0.577216.. and Gm,n

p,q is Meijer’s function.

Bernecker & Meyer 1107.4388; Mainz-CLS 1705.01775.



TMR: a look at the integrand (light-quark conn. contribution)
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Illustration: mπ = 190 MeV and mπ = 270 MeV

• signal-to-noise deteriorates at long
distances

• relative finite-volume effect becomes large at
long distances

• how to control the long-distance part of the
correlator?

Nf = 2 O(a) improved Wilson quarks: Mainz-CLS 1705.01775.



TMR on Nf = 2 + 1 CLS ensembles∗

∗ Here, D200: mπ = 200 MeV, a = 0.064 fm.

• state-of-the-art spectroscopy
including ππ interpolating operators

• benefit 1: if m has been computed
with error δm, the relative error on
e−mx0 is δm · x0 ⇒ only linear growth of
the error.

• benefit 2: correct for finite-size effects
from having discrete instead of
continuum ππ states.

1107.4388; 1710.10072 (Mainz-CLS).

Spectroscopy: B. Hörz, J. Bulava et al. (1511.02351).



Summary

• Lellouch-Lüscher type relations have important applications in
low-energy QCD phenomenology (e.g. flavor physics).

• In the ρ-meson channel, a dedicated calculation of the form factor in the
timelike region helps remove finite-volume effects; perhaps also improve
the statistical precision of lattice calculations of ahvp

µ .

• The extension to moving frames and sometimes the use of dedicated
boundary conditions plays an important role in practice.



Outlook

Can we go above the elastic scattering region?
• Extension to multi-two-particle channels exists.
• Three-particle channel available too. Many aspects to explore.
• Higher up in energy: even experiments perform inclusive measurements.

Can we do the same on the lattice?  Lecture 3.


