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Outline

Lecture 1: Within Quantum Mechanics, relate the spectrum and matrix
elements calculated on an L× L× L torus to scattering phases and transition
amplitudes.

Lecture 2: Relativistic exclusive processes: the K → ππ decay; and
e+e− → ππ and applications to (g− 2)µ

Lecture 3: Probing inclusive transition rates in lattice QCD.

“Scattering of particles leaves an imprint on stationary observables; our task
is to decipher that imprint.”



Why QM?

It is instructive.

An approach to particle scattering that does not work in QM will surely not
work in relativistic QFT.

In two-body scattering, it has been shown that the QFT case can be reduced
to a QM problem in the c.m. frame à la

− 1
2µ
4ψ(r)+

1
2

∫
d3r′ UE(r, r′)ψ(r′) = Eψ(r), 2-particle energy = 2

√
m2 + mE

M. Lüscher, Commun. Math. Phys. 105, 153-188 (1986)



1d case: scattering states on the circle

[Lüscher Comm.Math.Phys. 105, 153 (1986)]

Consider a one-dimensional QM problem,

ψ(x, y) = f (x− y) = f (y− x)

{− 1
m

d2

dz2 + V(|z|)} f (z) = E f (z) .

Scattering state: for E = k2/m, k ≥ 0, choose

fE(z)
|z|→∞∼ (1 + . . . ) cos(k|z|+ δ(k))

• now consider a finite periodic box, L� range of V

• VL(z) =
∑
ν∈Z V(|z + νL|)

• in leading approx., fE(z) unchanged, but quantization condition:

f ′E(− L
2 ) = f ′E( L

2 ) = 0 ⇒ 1
2 kL + δ(k) = πn, n ∈ Z.

Generalization to 3d?



Lüscher’s condition: quantum mechanics analysis (I)

M. Lüscher B354 (1991) 531

Two spinless particles in the final state, interacting via a short-range potential
of range R; reduced mass µ = (1/m1 + 1/m2)

−1.

A. Scattering state in infinite volume in the rest frame:
wavefunction ψ(x1 − x2)

For r > interaction range, ψ satisfies the free stationary Schrödinger equation
(i.e. the Helmholtz equation)

(4+ k2)Ψ(r) = 0, E =
k2

2µ
.

Solution via spherical Bessel functions,

ψ(r) = Y`m(θ, φ)
(
α`(k)j`(kr) + β`(k)n`(kr)

)
, r > R.

Scattering phase δ` for final state with angular momentum `:

e2iδ` =
α`(k) + iβ`(k)

α`(k)− iβ`(k)
.



Lüscher’s condition: quantum mechanics analysis (II)

B. On the L× L× L torus, state with total momentum P = 0: relative motion
described by wave function Ψ(r).
For L/2 > r > R, Ψ satisfies again the Helmholtz equation, but different
boundary condition. Let

Γ =
{

p | p =
2π
L

n, n ∈ Z3
}
.

The fundamental solution, is (for k such that the denominator never vanishes)

G(r; k2) =
1
L3

∑
p∈Γ

eip·r

p2 − k2 , satisfying − (4+ k2)G(r; k2) = δ
(3)
L (r).

The state belongs to an irreducible representation of the cubic group. For
instance, for the T1 irrep containing the ` = 1, 3, . . . waves, one solution is

Ψ(r) = v1,0 G1,0(r, k2) = 1
2L3

√
3
π

v1,0
∂

∂z

∑
p∈Γ

eip·r

p2 − k2 .



Origin of the quantization condition

For given energy E, the angular momentum ` component of the
wave-function is uniquely determined up to normalization, because
• the regular solution in the region 0 < r < R for given energy E is unique

up to overall normalization;
• it determines the value and derivative of ψ`=1(r = R);
• this then uniquely determines the wave function for r > R (initial-value

2nd order ODE).

Therefore, the angular momentum ` component of the finite-volume
wave-function must be proportional to the infinite-volume wave-function of
same energy E.

However, directly calculating e.g. the ` = 1 component of G1,0(r, k2), this is
not true for fixed L and a randomly chosen E; it is true only for discrete values
of the energy⇒ quantization condition.



Math. problem: partial wave decomposition of G`,m(r, k2)

Expansion in spherical harmonics is dictated by the geometry of the cube.
Since we know the r dependence must be given by n`(kr) and j`(kr),
sufficient to look at r → 0.
Simplest case:

G(r, k2) ≡ 1
L3

∑
p∈Γ

eip·r

p2 − k2 =
k

4π
n0(kr)︸ ︷︷ ︸

r→0 : (4πr)−1

+
1
L

∞∑
`=0

∑̀
m=−`

ḡ`m(q)Y`m(θ, φ) jl(kr).

E.g. ḡ00(q)/L =
√

4π limr→0(G(r, k2)− 1
4πr ).

Use
∫

dt etq2
K(t, r) type representation of G(r, k2) with the heat kernel

K(t, r) = 1
L3

∑
p∈Γ eip·r−p2t.

Result:

ḡ`m(q) =
i`

πq`
Z`m(1; q2), q =

kL
2π
.

“3d zeta fctn”: Z`m(s; q2) =
∑
n∈Z3

Y`m(n)

(n2 − q2)s , Y`m(r) ≡ r`Y`m(θ, φ).



Math. problem: PW decomposition of G`,m(r, k2) (II)

Example in the T1 irrep:

G1,m(r) = − k2

4π
Y1m(θ, φ)[n1(kr) +M1m,1m(q) j1(kr)] + other partial waves.

M`m,`′m′(q) = combination of 3d zeta functions and Clebsch-Gordan
coefficients.

Compare the expression with infinite-volume wave function

ψ1,m(r) r>R
= Y1,m(θ, φ)

(
α1(k)j1(kr) + β1(k)n1(kr)

)
⇒ quantization condition:

α1(k)− β1(k)M1m,1m(q) = 0.

More generally: det[A− BM] = 0.



The main practical result for the spectrum

Lüscher’s condition determining the spectrum in the A1 or in the T1

representation, neglecting all but the lowest-` scattering phase
(s and p wave respectively):

δ`(k) + φ(q) = nπ, n ∈ Z, q ≡ kL
2π
.

φ(q) a known, continuous kinematic function; φ(0) = 0 and

tanφ(q) = − π3/2q
Z(1; q2)

, Z(s; q2) =
1√
4π

∑
n∈Z3

1
(n2 − q2)s .

Non-relativistic quantum mechanics: E = k2

2µ .

Not obvious, but in a relativistic theory, the only change is that E = 2
√

k2 + m2.



Analytically continuing zeta functions

For Re(s) > 1:

ζ(s) ≡
∑
n≥1

1
ns =

∑
n≥1

1
Γ(s)

∫ ∞
0

dt ts−1 e−tn =
1

Γ(s)

∫ ∞
0

dt
ts−1

et − 1
.

Now

ζ(s) =
1

Γ(s)

{∫ 1

0
dt ts−2 +

∫ 1

0
dt ts−1

[ 1
et − 1

− 1
t

]
+

∫ ∞
1

dt
ts−1

et − 1

}
.

The analytic continuation to Re(s) > 0 can now be performed by replacing∫ 1
0 dt ts−2 by 1

s−1 .

∑
n∈Z

1
(n2 − q2)s =

∑
|n|<λ

1
(n2 − q2)s +

1
Γ(s)

∫ ∞
0

dt ts−1 etq2 ∑
|n|≥λ

e−tn2

for λ2 > Re(q2). Then proceed in the same way to continue to the region
Re(s) ≤ 1

2 .
The case of the 3d Z`m(s; q2) is analogous.



Normalization of the states (I)

∞ Vol: ψ(r) = Y`m(θ, φ) (α`(k)j`(kr) + β`(k)n`(kr)), r >interaction range

Torus: Ψ(r) = v1,0 G1,0(r, k2) = 1
2L3

√
3
π v1,0

∂
∂z

∑
p

eip·r

p2−k2 .

� Lüscher’s condition determining the spectrum:

δ`(k) + φ(q) = nπ, n ∈ Z, q ≡ kL
2π
.

� What value of v1,0 normalizes the wavefunction to unity? Use a trick:
[Lellouch, Lüscher hep-lat/003023; HM 1202.6675]

δ`
(L)→ En(L)

↓ ∆V ↓ ∆V

δ` + ∆δ`
(L)→ En(L) + ∆En(L).



Normalization of the states (II)

1st order perturbation theory in quantum mechanics under V → V + ∆V:

∆E =

∫
ΩL

d3r Ψ(r)∗ QΛ︸︷︷︸
projector onto `≤Λ

∆VL(r) Ψ(r) =
dE
dk

∆k.

On the other hand, the change in the phase shift is given by the generalized
Born formula (see e.g. Landau & Lifshitz, Quantum Mechanics, parag. 133),
which for an energy-normalized wavefunction takes the form

∆δ` = −π
∫ ∞

0
r2 dr ∆V(r)|ψ`m(r)|2.

Taking the differential of the quantization condition, the change in the
scattering phase is accompanied by a change in the energy level according to

∆δ`(k) = −F`(k, L)
∆k
k
, F`(k, L) ≡ k

∂δ`(k)

∂k
+ qφ′(q).

F`(k, L) is the Lellouch-Lüscher factor.
Putting these three equations together, we obtain. . .



Relation between finite- and infinite volume wavefunction

|ψ1,m(r)|2 =
dk
dE
· F1(k, L)

πk
· |Ψ1,m(r)|2, (r < L/2).

• infinite volume normalization of states:

ψ(r; E) = Y1m(θ, φ)ψ1m(r; E),

∫
d3rψ(r; E)ψ(r; E′) = δ(E − E′);

• finite volume normalization of states:

Ψ(r) =
∑
`,m

Y`m(Ω)Ψ`m(r),
∫ L

0
d3r|Ψ(r)|2 = 1.

F`(k, L) ≡ k
∂δ`(k)

∂k
+ qφ′(q), E(k) =

k2

2µ
.



Higher partial-wave content of the finite-volume state

Writing
Ψ(r) = v1m̄ G1m(r, k2) = v1m̄

∑
`=1,3,...

Y`m̄(θ, φ)Ψ`m̄(r),

the relation on the previous slide shows that

v1m̄ = −

√
2µ

F1(k, L)

dE
dk

4π
k

sin δ1.

For ` = 3, 5, . . . ,

Ψ`m̄(r) = − k2

4π
v1m̄ M1m̄,`m(q) j`(kr).



Coupling the particles to photons [HM, 1202.6675]

Couple the two (interacting) particles to electromagnetic radiation. With

R =
mara + mbrb

M
, r = rb − ra (M = ma + mb),

the matter-radiation Hamiltonian can be written in the form

Hkin =
1

2M
(P− (eaAa + ebAb))

2 +
1

2µ

(
p− µ( eb

mb
Ab − ea

ma
Aa)
)2

• µ = mamb
ma+mb

= reduced mass of the two particles

• Ac ≡ A(rc)

• ec is the electric charge (c = a, b)
• the non-vanishing commutation relations are [Pi,Rj] = [pi, rj] = −iδij.



Applying Fermi’s golden rule

Transition rate: dP
dt = 2π|〈Ψf|hI |Ψi〉|2ρ(Ef),

where ρ(E) = dn
dE is the density of final states.

FGR assumes Ψf and Ψi are unit-normalized. If instead |Ψf〉 is
energy-normalized, meaning

〈Ψf(E)|Ψf(E′)〉 = δ(E − E′),

then ρ(Ef) can be set to unity.

The transition is forbidden unless spatial momentum is conserved:
if |ψf,i〉 = L3/2|Ψi,f〉, can write

〈ψf|hI |ψi〉 = (2π)3δ(3)(P− P′) · A, A = 〈Ψf|hI |Ψi〉.

From then on, work with the |ψf,i〉.

In quantum mechanics, 〈R r|ψf〉 = eiP′·Rψf,`(r)Y`m(θ, φ) with∫∞
0 dr r2ψf,`,E(r)ψf,`,E′(r)∗ = δ(E − E′).



Transition in infinite volume (I)
One-photon transitions driven by the term

hI = −1
2

{
p, ( eb

mb
Ab − ea

ma
Aa)
}

(and a second term HI = − 1
2M {P, eaAa + ebAb}, but the latter is subdominant

at long wavelengths).

Consider a transition from an s-wave bound state ψi to a final state ψf with
angular momentum eigenvalues (` = 1,m = σ). Using Fermi’s Golden Rule,
transition rate given by dP

dt = 2π|〈ψf|hI |ψi〉|2ρ(Ef); divide by the photon flux
(= c) to get the cross-section.

Expand photon field in plane waves ([ak,σ , ak′,σ′ ] = (2π)3δ(3)(k− k′)δσσ′ ):

A(t, r) =

∫
d3k

∑
σ

(2π)3
√

2ωk

(
ak,σεσ(k) ei(k·r−ωt) + a†k,σεσ(k)∗ e−i(k·r−ωt)

)
,

Use εσ · {p, eik·r} = 2p · εσ + O(k) and p = iµ[H0, r] to write

hI =
1
−2

∫
d3k

∑
σ

(2π)3
√

2ωk

{
aσ(k)ei(k·R−ωk t)( eb

mb
− ea

ma
)2iµ[H0, r·εσ(k)]+h.c.+O(k)

}



Transition in infinite volume (II)

Transition matrix element: 〈R r|ψi〉 = e−ik·Rψi(r), 〈R r|ψf〉 = ψf(r)

A = −iµ 1√
2ω

( eb
mb
− ea

ma
) (Ef − Ei)

∫
d3r ψf(r)∗(εσ(kγ) · r)ψi(r) + O(k).

Kinematics of the reaction: Ef − Ei = ω, pf − pi = k.

Cross section:
∫

d3r |ψi(r)|2 = 1,
∫

d3r ψf(r;E)ψf(r;E′)∗ = δ(E − E′)

σ`m(ω) = δ`1δmσπµ
2( eb

mb
− ea

ma
)2ωγ |εσ(kγ) · rfi|2 rfi ≡

∫
d3r ψf(r)∗ rψi(r).

Differential cross-section:
prob. to go into p-wave × angular prob. distribution of the p-wave ψf(r)

dσ = σ1σ(ω)|Y1,σ(θ φ)|2 dΩ ∝ sin2(θ) dΩ.



Photodisintegration from matrix elements on the torus

• energy-levels of the final two-particle scattering state are discrete⇒
tune the box size L to have all particles on-shell

• initial state has a radius rs < L/2⇒ essentially the only angular
momentum component is the s-wave component (up to expt. corr.)

• the position operator is a pure ` = 1 operator⇒

• the only partial wave that can be reached is ` = 1

• the position-space contributions to Rfi ≡ 〈Ψf|r|Ψi〉 are localized at r < rs

• the matrix element Rfi would be the same as in infinite volume, if the
normalization of the p-wave component of the final state were the same.

|εσ(kγ) · rfi|2 =
dk
dE
· F1(k, L)

πk
· |εσ(kγ) · Rfi|2.

i.e.

σ(ω) = 4π2µ2( eb
mb
− ea

ma
)2ωγ |A|2, |A|2 =

dk
dE
· F1(k, L)

πk
· |〈Ψf|hI |Ψi〉|2︸ ︷︷ ︸

on the torus, unit-norm states



Summary of lecture 1

• The quantization condition determining the finite-volume
spectrum of two-particle states in terms of the
infinite-volume scattering phases is derived. Main technical
difficulty stems from expanding a stationary wave on the
torus in spherical harmonics.

• Transitions from a bound state to a scattering state: can be
computed on the torus at low energies. We saw the case of
an electric dipole transition.

• Next lecture: relativistic applications.


