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Chapter 3

Top-Down Approach

Let us assume the following physics setting

• One heavy mass M

• Look at processes well below energies of the heavy mass particle, i.e.
E � M

• Scattering matrix expressed via path integral, i.e.

〈0|T
[
φ(x1) . . . φ(xn)

]
|0〉 = 1

Z

∫
Dφ︸︷︷︸∏

x
dφ(x)

eiSφ(x1) . . . φ(xn) (3.1)

with

Z = eiS . (3.2)

3.1 Effective action and power counting

Let us split the field into low and high energy modes

φ(x) = φL(x) + φH(x) (3.3)

where the separation is meant with respect to fourier modes. Since we are
only interested in physics at E � M , we will only look at

〈0|T
[
φL(x1) . . . φL(xn)

]
|0〉 (3.4)
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26 CHAPTER 3. TOP-DOWN APPROACH

that is Green’s functions of the low energy modes of the fields φ. We can
calculate these in the full theory

〈0|T
[
φL(x1) . . . φL(xn)

]
|0〉 =

∫
DφL

∫
DφHeiS(φL+φH)φL(x1) . . . φL(xn)

=

∫
DφLe

iSΛ(φL)φL(x1) . . . φL(xn) (3.5)

SΛ(φL) is called the Wilsonian effective action. This explains the notion
of Integrating out heavy degrees of freedom. In SΛ all physics related to
energies at the heavy scale Λ ∼ M is included. For scales of ∆x ≈ 1

Λ the
effective action SΛ is non-local. For energies well below Λ we can however
expand the non-local action in a series of local operators

SΛ(φL) =

∫
d4xLeff

Λ (x) (3.6)

where

Leff
Λ (x) =

∑
giOi(x) (3.7)

The effective Lagrangian contains an infinite number of local operators, the
coefficients of which are called Wilson coefficients.
How do we handle in infinite number of terms?
We will need some criterion to tell which operators are important! Let us
look at the dimension of the operators and let us revisit the example from
chapter 1, i.e. a theory with one heavy particle. Let us again look at the
2 → 2 scattering of the light particle

ΦH

ΦL

ΦLΦL

ΦL

∼ 1

s−M2
=

1

(p1 + p2)2 −M2
(3.8)

Since all momenta are much smaller than M , i.e. p1, p2 � M we can
expand the propagator
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ΦH

ΦL

ΦLΦL

ΦL

=

ΦL

ΦL ΦL

ΦL︸ ︷︷ ︸
∼ 1

M2

+

ΦL

ΦL ΦL

ΦL︸ ︷︷ ︸
∼ p2

M4

+ . . .

(3.9)

where Leff will contain terms like

Φ4
L, (∂µΦL∂

µΦL)
2, ∂µΦL∂

µΦLΦ
2
L (3.10)

which can be matched to the above expansion. In general the gi from
Eq. (3.7) are not easily calculated. Let us discuss the problem of the in-
finite tower of local interactions in the next section.

3.2 Power counting & loop expansion

The expansion of the non local action in terms of local operators leads to
termsof the form

1

M2
,

p2

M4
, . . . , etc. (3.11)

A natural way of organizing these terms is to use the dimension of the
operator. To that end let us define the negative mass dimension γi of the
Wilson coefficient gi,

gi = CiM
−γi , (3.12)

Ci ≡ dimensionless coefficient. (3.13)

The dimensionless coefficient is expected to be of natural size, i.e. Ci ∼ O(1).
Let us look at a dimensionless variable f

[f(gi, E)] ∼
( E

M

)γi
=


O(1) γi = 0
� 1 γi < 0
� 1 γi > 0

(3.14)
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The contributions to f can be split into important and less important parts,
according to their mass dimension, where contributions for γi < 0 are im-
portant at low energies. This establishes a power counting where if we are
interested in a quantity to precision ∆ we include all operators to a finite
order in their mass dimension, i.e.

∆ ∼
( E

M

)n
, (3.15)

ln∆ = n ln
( E

M

)
, (3.16)

n =
ln∆

ln
(

E
M

) . (3.17)

How do we determine the mass dimensions of the operators and their Wilson
coefficients? We use the fact that the action, which gives the weight in the
path integral, has to be a pure number. Since x ∼ 1

M the mass dimension
of the Lagrangian L in D dimensions is [L] = D. Furthermore let us assume
the theory is weakly coupled, why this is necessary we will see later. To make
the discussion more explicit let us look at a scalar theory in D dimensions,
i.e. the free part is given by

SD =

∫
dDx

1

2

(
∂µφ∂

µφ−m2φ2
)

(3.18)

where we can fix the dimension of the field φ using the term proportional
to m2,

[L] = D = [m2][φ2] (3.19)
D = 2 + 2[φ] (3.20)

[φ] =
D

2
− 1. (3.21)

Since the ingredients of the Lagrangian are the fields, masses and momenta
we can use these to fix the mass dimension of the Wilson coefficients by first
fixing the dimension of the operators, i.e.

[L] = D = [giOi] (3.22)
D = [gi] + [Oi] (3.23)
D = −γi + δi, (3.24)

where δi denotes the dimension of the operator Oi. The mass dimensions
for the operators and Wilson coefficients for some operatore are given in In
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Operator δi γi gi
∂µφ∂

µφ D 0 ∼ 1
φ2 D − 2 −2 ∼ M2

φ4 2D − 4 D − 4 ∼ M4−D

Table 3.1: Mass dimension of operators of scalar fields φ in D dimensions.

general operators of scalar fields φ with n derivatives and m fields have the
mass dimension

δi = n
(D
2

− 1
)
+m, (3.25)

γi = δi −D (3.26)

= (n− 2)
(D
2

− 1
)
+ (m− 2). (3.27)

One observation is that for D > 2 only few operators have negative γi. The
usual terminology in the context of power counting is given in table 3.2. The
mass dimension of the operators is also referred to as the scaling dimension
of the operator. To understand this name and also to deal with cases where
the operators are not organized according to their mass dimension we discuss
the scaling properties of the action. Again consider a scalar theory, this time
including interactions

S[φ] =

∫
dDx

[
1

2

(
∂µφ∂

µφ−m2φ2
)
− λ

4!
φ4 − τ

6!
φ6

]
. (3.28)

The dimensions are

[S] = 0, [φ] =
D − 2

2
, [m2] = 2 (3.29)

[λ] = 4−D, [τ ] = 6− 2D. (3.30)

We want to study the behavior of Green’s functions

〈T (φ(x1) . . . φ(xn))〉

Dimension Importance at E � M Calling Convetion
δi < D &γi < 0 grows relevant (super-renormalizable)
δi = D &γi = 0 const marginal (renormalizable)
δi > D &γi < 0 decreases irrelevant (non-renormalizable)

Table 3.2: Calling convention of different dimension operators in the EFT
(QFT) language.
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at long distances (low energies). To that end we analyse the Green’s func-
tions change under rescaling of the space time coordinates x → sx. This
rescaling amounts to an inverse rescaling of the derivative, i.e. ∂ → 1

s∂. Let
us rescale Eq. (3.28)

S[φ(sx)] =

∫
dDxsD

[
1

2

( 1

s2
∂µφ∂

µφ−m2φ2
)
− λ

4!
φ4 − τ

6!
φ6

]
(3.31)

and canonicalize the free kinetic part

=

∫
dDxsD−2

[
1

2

(
∂µφ∂

µφ− s2m2φ2
)
− s2

λ

4!
φ4 − s2

τ

6!
φ6

]
(3.32)

introduce redefinition φ →s(2−D)/2φ′

=

∫
dDx

[
1

2

(
∂µφ

′∂µφ′ − s2m2φ′2
)
− s4−D λ

4!
φ′4 − s6−2D τ

6!
φ′6

]
(3.33)

For the Green’s function the rescaling results in

〈T (φ(sx1) . . . φ(sxn))〉 = sn(2−D)/2〈T (φ′(x1) . . . φ
′(xn))〉. (3.34)

This explains the word scaling dimension. At D = 4 we see that s → ∞

• m2 term gets more and more important

• τ term is less important

• λ term is equally important at all scales.

Identify the mass scale with the scale of new physics

⇒ m2 ∼ Λ2
new, λ ∼ Λ0

new, τ ∼ Λ−2
new. (3.35)

This explains why renormalizability is not an issue, as we would expect new
physics to set in before the nonrenormalizable interaction can do any harm.
Note that relevant operators can spoil power counting and we will discuss
in some detail what the problem is. The term irrelevant is a misnomer, as
the contributions are only suppressed, i.e. in precise enough measurements
effects of these irrelevant operators can be sizable.
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How about that relevant coupling, i.e. the operator φ2 would give rise
to terms

φ2 ∼ Λ2
newσ (3.36)

where σ is of natural size. The problem with terms like these is that they
contribute to the mass of the particle, e.g. in the Standard Model there is
a contribution to the Higgs mass of a quartic coupling, i.e.

∼ Λ2 (3.37)

however Λ is supposed to be much higher than mH which seems to be a
contradiction. Another example

Z

b
t t

b

W± W±︸ ︷︷ ︸
∼ 1

m2
t

mt�mW−−−−−−→

Z

b b
W± W±

︸ ︷︷ ︸
∼ 1

m2
t

(3.38)

However if one closes the W± lines to form a loop the result is proportional
to m2

t , i.e.

Z

b
t t

b
W±

∼ m2
t (3.39)

i.e. the loop expansion and power counting seem to give incompatible re-
sults, at least using a cut off as a UV regulator. We will see that in an
appropriately chosen regulator the naive dimensional analysis also holds for
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loop diagrams. Let us look at what kind of contributions one loop diagrams
generate

∼ λ2

∫
dDk

1

k2 −m2

1

(p+ k)2 −m2
(3.40)

For large k

λ2

∫
dDk

1

k2 −m2

1

(p+ k)2 −m2
→

∫ Λ dk

k
∼ lnΛ (3.41)

the above diagram renormalizes the φ4 vertex. Similarly

∼ λτ

∫ Λ

. . . → (3.42)

∼ τ2
∫ Λ

. . . → (3.43)

where we see in the last line that the one loop calculation including non-
renormalizable interactions generates divergences for which a counter term
of higher order in the number of fields, i.e. φ8 is necessary. This interac-
tion is missing in the action, hence the name nonrenormalizable. However
if dimensional counting were to hold, than we would expand the amplitudes
in powers of 1/Λ, which means that in the EFT one needs to include all
interaction up to that order, i.e. including the φ8 interaction, in the theory.
However these contributions would be suppressed, on dimensional ground
with respect to the φ4 and φ6 interactions. In this sense renormalizability
is overrated.

Example:
Weak interaction

O = uγµ(1− γ5)deγ
µ(1− γ5)ν. (3.44)

The dimensions of the fermion fields is [u] = [d] = [e] = [ν] = 3/2, i.e. the
operator is of dimension 6, hence the Wilson coefficient will have -2 mass



3.2. POWER COUNTING & LOOP EXPANSION 33

dimensions, i.e. a suppression of 1/M2 is to be expected, where M is some
heavy mass of the theory. Using this EFT one can guess what the scale
of new physics, i.e. the mass of the heavy particle would be. Including all
group theoretical factors one can infer from the experimental data, that new
physics would enter at M ≥ 60GeV.

Let us look at four fermion theory, i.e.

Lfree = Ψ(i /D −m)Ψ (3.45)
Lint = Ψ ·ΨΨΨã (3.46)

The dimensions are

[Ψ] =
3

2
, [Ψ] =

3

2
, [ã] = −2 (3.47)

ã =
a

M2
(3.48)

where a is now dimensionless. The one loop contribution to the mass is
given by

∼ a

M2

∫
d4k

/k +m

k2 −m2
. (3.49)

We can use the fact that odd integrals over the loop momenta vanish

I =
a

M2

∫
d4k

/k +m

k2 −m2
(3.50)

=
am

M2

∫
d4k

1

k2 −m2
(3.51)

Let us look at the different regions of momenta for the loop integral. First
k ∼ m ∫

d4k
1

k2 −m2
∼ m2 (3.52)

which can be seen by arguments of dimensionality. For the low energy part
we see the expected behavior of the one loop amplitude with respect to the
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power counting

∼ am3

M2
. (3.53)

This is a small contribution to m suppressed by 1/M . For the region k � m
let us do the full integral in cutoff theory. To that end we will switch to
euclidean momenta

I1 =
am

M2

∫
dDk

(2π)D
1

k2 −m2
(3.54)

= i
am

M2

∫
dDkE
(2π)D

1

−k2 −m2
(3.55)

= −i
am

M2

2

(4π)2

ΛUV∫
0

dk
k3E

k2E +m2
(3.56)

= −i
am

M2

1

(4π)2
(
m2

(
log

(
m2

)
− log

(
m2 + Λ2

UV
))

+ Λ2
UV

)
(3.57)

= −i
am

M2

1

(4π)2

(
− m4

Λ2
UV

+ 2m2 log

(
m

ΛUV

)
+ Λ2

UV + . . .

)
. (3.58)

The first and second term in the paranthesis are suppressed however the
last term is proportional to positive powers of the UV-scale. It is a general
feature that relevant terms may spoil power counting in loop calculations if
a cutoff regukator is used.
Ways out of this problem

• Modify high energy behavior of LET such that power counting holds
→ change couplings (become Λ dependent) to absorb power counting
violating terms

• Use regularization that respects dimensional analysis → dimensional
rgularization DimReg

DimReg is sometimes referred to as a mass independent schemes. The most
general definitioin of a mass independent scheme is (Georgi)

“All evolution functions (β-functions) should be independent of
renormalization scale and only depend on physical parameters.”
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The self energy diagram in DimReg reads

−i
am

M2

∫
dDkE
(2π)D

1

k2E +m2
= −i

am

M2

2
(
µ2eγe/4π

)ε

(4π)D/2Γ(D/2)

∞∫
0

dkE
kD−1
E

k2E +m2
(3.59)

= −i
am

M2

π csc(πD/2)eεγE

Γ(2− ε)(4π)2

( µ2

m2

)ε
m2 (3.60)

= i
am

(4π)2
m2

M2

( 1

2ε
+ 1− ln

(m2

µ2

)
+O(ε)

)
,

(3.61)

where we use ε = (4−D)/2. We see that the expression in Eq. (3.61)

• respects the power counting,

• has the same log as in Eq. (3.58) with the replacement Λ ↔ µ.

A simple way to renormalize this expression is to introduce counterterms
that cancel the divergent piece, i.e. ∼ 1/ε. This prescription is called min-
imal subtraction, the term we have shown in the above expression already
subtracts an additional (4π)ε = 1+ε ln 4π+O(ε2) term and is called MS. Di-
mensional regularization does not break power counting and one can count
the loop momentum as a small quantity. Let us stress that the power count-
ing only applies to renormalized couplings. We could therefore add coun-
terterms also to the cutoff regulated theory such that all power counting
violating terms would be absorbed in thee redefinition of the Wilson coeffi-
cients. However dimensional regularization is an easier way of performing
loop calculations!

3.3 Dimensional Regularization

We are interested in calculating integrals of the form Eq. (3.59)

∫
dDkE
(2π)D

1

k2E +m2
= ΩD

∞∫
0

dkE
kD−1
E

k2E +m2
(3.62)

= ΩD
1

2
π

(
1

m2

)1−D
2

csc

(
πD

2

)
,m ∈ R ∧ 0 < D < 2.

(3.63)



36 CHAPTER 3. TOP-DOWN APPROACH

In the following we will use the abbreviation

dDk

(2π)D
= d̄Dk. (3.64)

The following Axioms define dimensional regularization

• Linearity:∫
d̄Dk [af(k) + bg(k)] = a

∫
d̄Dk f(k) + b

∫
d̄Dk g(k) (3.65)

• Translational invariance:∫
d̄Dk f(a+ k) =

∫
d̄Dk f(k) (3.66)

• Scaling:∫
d̄Dk f(sk) = s−D

∫
d̄Dk̃ f(k̃) ,with k = s−1k̃ (3.67)

In the Euclidean the D-dimensional integral can be split using spherical
coordinates, where the integral over the angular part is given as

dDk = dkdD−1dΩD (3.68)∫
dΩ)D =

2πD/2

Γ(D/2)
. (3.69)

The UV-divergence is in the one dimensional integral over the radius. For
spherically symmetric integrands we have

d̄Dk =
1

(2π)D
dDk =

2πD/2

Γ(D/2)
dkkD−1 (3.70)

=
2

(4π)D/2Γ(D/2)
dkkD−1. (3.71)

Some (for later usefull) results read∫
d̄Dk

(k2)α

(k2 +A)β)
=

1

(4π)D/2
AD/2+α−β Γ(β − α−D/2)

Γ(β)

Γ(α+D/2)

Γ(D/2)
.

(3.72)
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We use

D = 4− 2ε (3.73)

where

ε =

{
> 0 renders UV finite
< 0 renders IR finite (3.74)

Based on dimensional arguments scaleless integrals vanish∫
d̄Dk(k2)α = 0 ,∀α ∈ R. (3.75)

Dimensional regularization is well defined even in the case of UV and IR
divergent integrals. The idea is to calculate the integral in a region of D
where it is convergent and the analytically continue to other D.∫

d̄Dkf(k2) exists for 0 < D < Dmax. (3.76)

To obtain a solution in the range 2 < D < Dmax rewrite

∫
d̄Dkf(k2) =

2

(4π)D/2Γ(D/2)


∞∫
c

dkkD−1f(k2) +

c∫
0

dkdD−1(f(k2)− f(0)) +
f(0) cD

D


(3.77)

LHS independet of c. Perform limit c → ∞

∫
d̄Dkf(k2) =

2

(4π)D/2Γ(D/2)

∞∫
0

dkdD−1(f(k2)− f(0)). (3.78)

Why is this integral better behaved in the IR than the original one? Taylor
expansion of the integrand near zero

f(k)2 = f(0) + k2f ′(0) + . . . (3.79)
f(k2)− f(0) = k2f ′(0)︸ ︷︷ ︸

less IR divergent by 2

(3.80)

Repeat the above to extend the solution in D.
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3.3.1 MS-Scheme

One way to renormalize the amplitudes in dimensionally regularized theories
is the minimal subtraction scheme (MS-scheme). Here the idea is to rewrite
the bare couplings in terms of renormalized ones

mbare = Zmm = m+ ~δm,

and redefine the renormalized couplings in such a way that only the divergent
terms are absorbed, e.g. Eq. (3.61) where the divergent part of the self
energy reads

= i
am

(4π)2
m2

M2

( 1

2ε

)
(3.81)

and after subtraction the divergent part should be cancelled

+ = 0 (3.82)

i
am

(4π)2
m2

M2

( 1

2ε

)
+ δm = 0 (3.83)

In dimensional regularization we furthermore introduce a scale µ such
that the couplings have the same dimension irrespective of D, e.g.

gbareΨ /AΨ, [gbare] =
4−D

2
= ε (3.84)

gbare = Zgµ
2εg(µ), (3.85)

where in the last line we have introduced the renormalized coupling gbare =
Zgg and extracted the dependence on the regularization scale µ. µ is not
a property of loop integration itself, but rather keeps the dimension of our
coupling the same in all dimensions. In loop calculations this scale µ will
normalize the other scales of the integrand in the logs that appear after the
expansion of D around 4.
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In principle the definition of the scale is not unique as one can introduce

µ′2 =
µ2eγE

4π
(3.86)

with

γE = −Γ′(1). (3.87)

The easiest way to see all this at work is to look at the integral

µ2ε

∫
d̄Dk

1

k2E +m2
=

m2

16π2

[
−1

ε︸︷︷︸
MS

+γE − ln 4π

︸ ︷︷ ︸
MS

−1− ln
( µ2

m2

)]
(3.88)

(
µ2eγE

)ε
∫

d̄Dk
1

k2E +m2
= − m2

16π2ε
+

m2

16π2

[
−1− ln

( µ2

m2

)]
. (3.89)

where we have indicated the terms that are dropped in the different schemes
in the first line. The second line shows that MS can be implemented via a
different choice of µ.

Summary dimension regularization

• Good

– Preserves symmetries
– easy to use in calculations
– often gives manifest power counting

• Bad

– physcial picture less clear
– decoupling theorem does not apply

3.4 Decoupling Theorem

At the foundations of the EFT approach is the fact that we can compute
low energy observable without knowing the high energy part of the theory.
There is a more formal statement by Appelquist & Carazone
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“If the remaining low energy effective theory is renormalizable,
and we use a physical renormalization scheme, then all effects due
to heavy particles appear as changes in the coupling conmstants
if the LET or are suppressed by 1/Λ. ”

An example of a physical scheme is the off-shell momentum subtraction
scheme. MS is not a physical scheme, especially it does not see mass thresh-
olds of particles. The running QCD-coupling in MS reads

β(g) = µ
d

dµ
g(µ) = − g3

16π2

(11
3
CA − 4

3
TfnF

)
. (3.90)

where CA is the Casimir operator of the gauge group (SU(N)C), Tf = 1/2
and nF is the number of flavors. One can solve this differential equation for
the strong coupling

αs(µ) =
g2(µ)

4π
(3.91)

αs(µ) =
αs(µ0)

1 + αs(µ0)
b0
2π ln µ

µ0

. (3.92)

µ

α
s

The problem with Eq. (3.92) is that is does not depend on the masses of
say the top or bottom quark, i.e. it has no knowledge of the particle produc-
tion thresholds. As is, the top quark contributes at any µ to the running of
α, i.e. also in the LET. This happens only in an unphysical scheme and we
have to be careful here. The way out is to put in the decoupling by hand,
that is once we pass the threshold of a particle we calculate the running



3.5. RENORMALIZATION GROUP 41

of the coupling not in the full theory but rather in the theory where that
particle has been integrated out. For the calculation of the β function this
means

b0 =


11
3 CA − 4

3TF 6 mt < µ
11
3 CA − 4

3TF 5 mb < µ < mt
...

(3.93)

This will lead us to the general discussion of matching and the renormaliza-
tion group equations.

3.5 Renormalization Group
So far we have always completely integrated out heavy particles and ex-
panded the resulting non local interaction in an infinite tower of local inter-
actions. In this section we will see what happens if we only integrate out
a momentum slice δΛ and look at the changed that comes from this. This
means that in going from a theory with a cutoff of Λ to one with a cutoff
Λ− δΛ

• Particle content is unchanged

• Action is unchanged, only couplings gi change

For each cutoff we get a set of Wilson coefficients gi fixed either via matching
to the full theory or to experiment.

{gi(Λ)}
{gi(Λ− δΛ)}

...
{g(Λ− nδΛ)}

 repeated n times (3.94)

The procedure of subsequent matching of a theory at infinitesimally changed
cutoff is called Renormalization Group an it relates the coupling of a theory
at different scales

Λ
dgi
dΛ

= f({gi}). (3.95)

As an example let us at a toy model

L =
1

2
φ(x)

[
−m2 −�+ c�2 + . . .

]
φ(x), (3.96)
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where again we have normalized the Lagrangian to the kinetic term. This
interaction is quadratic in the fields an we can solve the generating functional
analytically.

φ(x) =

∫
d̃ke−ikxφ̃(k). (3.97)

The action in D dimensions reads

S =
1

2

∫
dDx

∫
d̃p

∫
d̃kφ̃(p)

[
−m2 + k2 + ck4 + . . .

]
φ̃(k)ei(p+k)x (3.98)

=
1

2

∫
d̃kφ̃(−k)

[
−m2 + k2 + ck4 + . . .

]
φ̃(k). (3.99)

We are working in a UV-cutoff theory, i.e.

∫
d̃k →

Λ∫
−Λ

. (3.100)

We split the fields into high and low modes

φ = φL + φH , (3.101)

in the following way

φ̃(k) = φ̃L(k) + φ̃H(k) (3.102)

=

{
φ̃L(k) |k| < bΛ

φ̃H(k) Λ > |k| > bΛ
. (3.103)

Λ
bΛ
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For the quadratic interaction the action splits into low and high modes
without mixing of the two

S = SL + SH (3.104)

=
1

2

bΛ∫
−bΛ

φ̃L(k)[. . . ]φ̃L(k)

+
1

2

Λ∫
−Λ

φ̃H(k)[. . . ]φ̃H(k). (3.105)

The Green’s functions of the low modes can be written in terms of the
generating functional

〈0|T (φL(x1) . . . φL(xn))|0〉 =
1

Z

∫
DφL

∫
DφHeiSHeiSLφL(x1) . . . φL(xn),

(3.106)

=
1

ZL

∫
DφLe

iSLφL(x1) . . . φL(xn). (3.107)

Comparing the low energy effective action with the one of the original theory
wee see that the transformations

k′ =
k

b
, x′ = xb (3.108)

bring the effective action to the original form with the cutoff at Λ instead
of bΛ, i.e.

SL =

Λ∫
−Λ

d̃k′bDφ̃(−k′)[m2 + b2k′2 + b4ck′4 + . . . ]φ̃(k′). (3.109)

Rescaling the fields

φ̃ → φ̃′b−(D+2)/2 (3.110)

to again normalize the kinetic term, the low energy effective action reads

SL =

Λ∫
−Λ

φ̃′(−k)[
m2

b2
+ k′2 + b2ck′4 + . . . ]φ̃(k′). (3.111)

We can iterate this transformation to establish the renormalization group
flow. In Eq. (3.111) we can see as we lower b
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• the mass term becomes more important

• the term proportional to c becomes less important.

The flow of the coupling is controlled by b

c

m

The point m = c = 0, i.e. the free massless scalar field theory has a
(Gaussian) fixed point. When extending the analysis to the case of weakly
coupled theories the results stay predominantly the same, i.e.

• relevant operators stay relevant

• irrelevant operators stay irrelevant

in going from a theory cut off at Λ1 → Λ2. The case of marginal operators
is more interesting. Let us look at φ4 theory (this time in euclidean space)

Z =

∫
Dφe

−
∫
dDx

[
1
2
(∂µφ∂µφ+m2φ2)+ λ

4!
φ4

]
(3.112)

where the measure is understood to be

Dφ =
∏
|k|<Λ

dφ̃(k), (3.113)

i.e. a cutoff regulated generating functional. We again split the field into
low and high modes

φ̃(k) = φ̃L(k) + φ̃H(k) (3.114)
φ̃H(k) = φ̃(k)Θ(|k| < Λ)Θ(|k| > bΛ). (3.115)
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For the quadratic part this splitting leads to a simple split in the action, i.e.

S = SL + SH (3.116)

the interaction part however contains admixtures of low and high modes.

S(φL + φH) = S(φL) + S(φH) +

∫
d4xλ

φ4
L

4!

+

∫
d4xλ

[φLφ
3
H

3!
+

φ2
Lφ

2
H

2!2!
+

φ3
LφH

3!

]
(3.117)

We can derive Feynmanrules for this action

ΦH = ∆H = 〈0|T (φH(x1)φH(x2))|0〉

=

∫ Λ

d̃keikx
1

k2 +m2
Θ(|k| > bΛ)

ΦL = ∆L = 〈0|T (φL(x1)φL(x2))|0〉

=

∫ Λ

d̃keikx
1

k2 +m2
(3.118)

= iλ (3.119)

= iλ (3.120)

= iλ (3.121)

= iλ (3.122)
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= iλ (3.123)

There is no propagator mixing low and high energy modes. We will
calculate the contribution of the high modes in n-point Green’s functions of
the low modes. At tree level we have

p2

p1

p3

=
1

(p1 + p2 + p3)2 +m2)
Θ(|p1 + p2 + p3| < bΛ)

(3.124)

Integrating the high modes leads to a six point interaction

∼ φ6
L ∼ 1

(Λb)2
(3.125)

If we are interested in the corrections to the four point function only one



3.5. RENORMALIZATION GROUP 47

loop corrections arise

+ (3.126)

Additionally one loop corrections to the external legs arise. We only need
to look at the contributions with heavy degrees of freedom. For the first
diagram we obtain

A =
λ2

2

∫
dDk

(2π)D
1

k2 +m2

1

(k + p1 + p2)2 +m2
Θ(|k| > bΛ)Θ(|k| < Λ)Θ(|k + p1 + p2| > bΛ)Θ(|k + p1 + p2| < Λ)

(3.127)

We will use m � bΛ and pi � bΛ and Taylor expand the integrand keeping
only th eleading order contributions

A =
λ2

2

∫
dDk

(2π)D
1

(k2)2
Θ(|k| > bΛΘ(k| < Λ)

=
λ2

2

ΩD

(2π)D

Λ∫
bΛ

kD−5

=
λ2

2

ΩD

(2π)D
ΛD−4 − (bΛ)D−4

D − 4︸ ︷︷ ︸
ln 1

b

(3.128)

=
λ2

16π2
ln

1

b
(3.129)

The same contribution comes from the t- and u-channel diagram thus the
total contribution is

DFull =
3λ2

16π2
ln

1

b
. (3.130)

Now we perform the matching of the two theories, i.e. we want

DFull −DLET = 0 (3.131)

λ′ = λ− 3λ2

16π2
ln

1

b
(3.132)
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The coupling gets smaller when integrating out the high eenergy modes.
Performing the matching at decreasing energies

dλ =
3λ2

16π2
d ln b (3.133)

λ(b)∫
λ(1)

dλ

λ2
=

3λ2

16π2
[ln b− ln 1] (3.134)

1

λ(b)
− 1

λ(1)
=

3λ2

16π2
ln b (3.135)

λ(b) =
λ(1)

1 + 3λ2

16π2λ(1) ln 1/b
(3.136)

To see how this integral representation arises let us define ∆ ≡ ∆(lnµ) =
1
N ln µ2

µ1
that is the energy step in going from µ2 to µ1 in N matching steps

λ(µ1e
∆) = λ(µ1) +Bλ2(µ1)∆ +O(λ3) (3.137)

λ(µ1e
2∆) = λ(µ1e

∆) +Bλ2(µ1e
∆)∆ +O(λ3) (3.138)

... =
... (3.139)

λ(µ2) = λ(µ1) +

N−1∑
j=0

Bλ2(µ1e
j∆) (3.140)

For N → ∞

λ(µ2) = λ(µ1) +

µ2∫
µ1

Bλ2(µ)
dµ

µ
(3.141)

= λ(µ1) +

µ2∫
µ1

Bλ2(µ)d lnµ (3.142)

This is the integral form of the renormalization group equation.

3.6 Naturalness

In or discussion so far we have tacitly assumed that the dimensionless cou-
plings are of natural size. We have seen that mass terms generate problems
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in the EFT picture, as they have positive mass dimensions and by dimen-
sional arguments we have related the mass of the light particle to the scale
of new physics Eq. (3.36) if we maintain the naturalness of the coupling.
There are some caveats to this naive arguments and it is not clear whether
or not this constitutes a real problem. I will try to lay out what the main
issues are. Let me start by a definition of naturalness

“The naturalness criterion states that a parameter is allowed to
be much smaller than unity only if setting it to zero increases
the symmetry of the theory. If this does not happen, the theory
is unnatural.” t’Hooft 1979

We would need a symmetry that protects our particles from acquiring a mass
on the order of the cutoff scale. For fermions there is such a symmetry, as
we will later see, however for scalars there is not. The naturalness problem
is present for scalar particles, e.g. in the SM the Higgs particle is affected
by this. Here the problem is called the hierarchy problem and it relates to
the question that if the SM is an EFT, why is the Higgs so much lighter
then the expected scale of new physics.
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