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Chapter 4

Bottom-Up Approach

The construction of the Wilsonian effective action is very intuitive, however
it might be very complicated to perform the explicit derivation of the action.
The good news is we do not need to go through all the steps. Instead of
introducing a cutoff and integrating out heavy degrees of freedom wee treat
the effective theory as a normal continuum effective theory. Why the notion
of continuum? The hard UV cutoff can be regarded as introducing a lattice
to regularize the theory, with finite lattice spacing.

How do we formulate the effective theory

• First fix the particle content of the theory, i.e. the relevant degrees of
freedom. So far we looked at scenarios of heavy particle that are weakly
coupled, where the relevant degrees of freedoms have been all particles
with masses below the heavy particle’s mass. There are nontrivial
examples like QCD, where at low energies the degrees of freedomare
the hadrons, i.e. π, K, ρ, ∆, protons NOT quarks,

• Construct the most general Lagrangian consistent with the symmetries
of the theory. Give a power counting scheme ordering the interaction
terms, e.g. dimension of operators,

• Matching (possibly) where we determine the coupling constants of
the low energy n-point Green’s function in the full and low energy
theory. We expand the full theory result according to the rules of
power counting and match the coefficients such that results agree,
or
Fix the unknown low energy constants (LEC) to physical observables
and use the so obtained values in other amplitudes.
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52 CHAPTER 4. BOTTOM-UP APPROACH

• Use renormalization group techniques to resum large logs. We will
see that it can be problematic to directly match at a given scale the
expressions obtained from perturbation theory. The idea is to match
at a scale where perturbation theory works and run the coupling down
to a lower scale using renormalization group equations.

In the following we will use a mass independent renormalization scheme, i.e.
MS. It is counterintuitive to not use a cutoff and integrate over momenta for
which the effective theory is not even valid. However we have seen that this
still can be done, as changing the UV should not affect the low energy, i.e.
the only changes will be to the renormalized couplings absorbing potential
power counting violating terms.

Correct low energy behavior ↔ absolutely wrong high energy behavior

4.1 Construction of EFTs

Let us start wit a toy model, the scalar theory of the last chapter

L =
1

2
∂µφL∂

µφL − m2

2
φ2
L +

1

2
∂µφH∂µφH − M2

2
φ2
H

− λL

4!
φ4
L − λH

4!
φ4
H − λHL

2!2!
φ2
Lφ

2
H − g

2!
φHφ2

L. (4.1)

Eq. (4.1) has a Z2-symmetry for the low energy degrees of freedom, i.e.
φL → −φL, which leads to only an even number of light fields. Let us
construct the EFT given the outline above.

• Identify the degrees of freedomat low energies, ⇒ φL

• Write the effective Lagrangian incorporating Z2-symmetry

Leff =
1

2
∂µφ∂

µφ− m̃2

2
φ2 − λ̃

4!
φ4

− c

M2
φ�2φ− 1

6!

c̃

M2
φ6 − 1

4!

c′

M2
φ2�φ2 +O(

1

M4
) (4.2)

For power counting we will use the dimension of the operators.

• Matching will be done using the 2-, 4- and 6-point functions.
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Matching at tree level.
EFT:

iΓ2 = −(p2 − m̃2) (4.3)

iΓ4 = λ̃− c′

M2

1

3

(
(p1 + p2)

2 + (p1 − p3)
2 (p1 − p4)

2
)

(4.4)

iΓ6 =
c̃

M2
+ . . . (4.5)

Full theory:

iΓ2 = p2 −m2 ⇒ m̃ = m+O(λ) (4.6)
iΓ4 = 0 ⇒ c = 0 +O(λ) (4.7)

iΓ6 = λL + i(ig)2
(

i

(p1 + p2)2 −M2
+

i

(p1 − p3)2 −M2
+

i

(p1 − p4)2 −M2

)
(4.8)

= λL − 3g2

M2
− g2

M4

[
(p1 + p2)

2 + (p1 − p3)
2 + (p1 − p4)

2
]
+ . . . (4.9)

λ̃ = λL − 3g2

M2
(4.10)

c′ =
3g2

M2
(4.11)

where we used the Taylor expansion for the heavy propagator. For the
6-point function at tree level we have

iΓ6 = + + . . .

+ + . . . (4.12)

The first line contains one light particle reducible diagrams only, i.e. cutting
through the propagator of a light degrees of freedomgenerates diagrams of
light degrees of freedomwith less external legs. In the above example cutting
a light degrees of freedomline generates 2 φ4

L vertices. The contribution of
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the second line contribute to the matching of the six point function. Since
there are not derivatives in the Lagrangian for c̃ we can set the momenta to
zero in the matching calculation. We obtain

c̃

M2
= i(−ig)2(−iλHL)(

i

−M2
)2 · 45 ⇒ c̃ = 45λHL

g2

M2

This completes the matching at tree level. The factor 45 is combinatorial
factor and is to do with the possible contractions leading to the same dia-
gram. Looking at the operators

φ2
L(x)φH(x), φ2

L(y)φ
2
H(y), φ2

L(z)φH(z) (4.13)

thus the total number of contractions with external light degrees of freedomis
6!. Out of these 6! contractions 4× 2× 2× 2 give the same contribution.

4.2 Representation Independence

After matching is performed all off-shell n-point Green’s functions of the
full and effective theory are exactly the same at low energies. However only
physical matrix elements are unambiguously defined, i.e. only the on-shell
Green’s functions. There is an ambiguity in the off-shell Green’s functions,
which we will exploit to simplify the Lagrangian.
Example

φ′ = (1 +
α

M2
�)φ

LEff =
1

2
∂µφ∂

µφ− m2

2
φ2 − λ̃

4!
φ4 − c

2M2
φ�2φ

− 1

6!

c̃

M2
φ6 − c′

4!M2
φ2�φ2,

L′
Eff = LEff − α

M2
φ�(�+m2 +

λ̃

3!
φ2)φ, (4.14)

where in the last line we have only kept terms up to order α. If we compare
the two Lagrangians we see that for the choice α = −c/2 we effectively
cancel the term proportional to c, i.e. L′

Eff free of − c
2M2φ�2φ.

L′
Eff = LEff|c=0 +

c

2M2
φ(m2 +

λ̃

3!
φ2)φ (4.15)
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Let us look at what we would have obtained by using the leading order
equation of motion, i.e.

(�+m2 +
λ̃

3!
φ2)φ = 0. (4.16)

Using Eq. (4.16) in Eq. (4.14) we arrive at the same solution Eq. (4.15). In
general a field redefinition of the form

φ′ = φ+
( 1

M2

)b
f(φ) = φ+ δφ (4.17)

leads to

L′
Eff = LEff +

( 1

M2

)n
f(φ)

[
�φ+m2 +

λ

3!
φ2︸ ︷︷ ︸

EOM

]
+O

(( 1

M2

)n+1
)

(4.18)

This means that one can use classical equations of motion to reduce the
number of independent terms in the effective Lagrangian. In general the
EOM only hold on the classical level however we can show that the effect
of EOM is achieved by field redefinitions. Under certain assumptions this
redefinition leaves physics untouched and is justified.

Generalized theorem

Field redefinitions that preserve symmetries and have the same
one particle states allow classical EOM to be used to simplify
local effective field theories without changing physics.

In the following we consider the following local EFT Lagrangian

LEff =

∞∑
n=0

cnL(n) (4.19)

which is a function of the complex scalar field φ, i.e.

L(0) = (∂µφ)
†∂µφ−m2φ†φ+ h.c. (4.20)

The goal is to remove a generic term like c1f(φ)�φ from L(1). The theory
is described by the generating functional

Z[j] =

∫ ∏
i

dφi exp
{
i

∫
dDx

[
L(0) + c1

(
L(1) − f(φ)�φ

)
+ c1f(φ)�φ

+
∑
k

jkφk + . . .
]}

(4.21)
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where we have just added a zero. All Green’s functions can be obtained
as functional derivatives from this generating functional. Let’s rewrite the
generating functional using the field redefinition

φ† = φ′† + c1f(φ) (4.22)

Z[j] =

∫ ∏
i

dφ′
i

∣∣∣∣ δφ†

δφ′†

∣∣∣∣ exp{i ∫ dDx
[
L(0) + c1f(φ)

[∂L(0)

∂φ† − ∂µ
∂L(0)

∂∂µφ†

]
c1

(
L(1) − f(φ)�φ′

)
+ c1f(φ)�φ′ +

∑
k

jkφk + jφ†c1f(φ) . . .
]}

(4.23)

The field redefinitions gives rise to a Jacobian and a new source term. We
will analyze these two contributions in the following. First let us look at the
change of the Lagrangian

L(n) = (∂µφ)
†∂µφ−m2φ†φ+ (. . . ) (4.24)

L′(n) = (∂µφ
′)†∂µφ′ −m2φ′†φ′ + c1f(−�φ′ −m2φ′) + (. . . )′ (4.25)

Since the transformation is assumed to preserve symmetries terms that are
in (. . . )′ are already present in (. . . ). Next we look at the Jacobian where
we will use the trick

det ∂µDµ =

∫
DcDc̄ exp

{
i

∫
d4xc̄[−∂µDµ]c

}
(4.26)

which relates positive power of the determinant of an operator to the gaus-
sian integral over Grassmann valued fields. These fields are bosons with the
wrong statistics, they are called Ghosts. The procedure was first introduced
by Fadeev and Popov. Using

δφ†

δφ′† = 1 + c1
δf

δφ′† (4.27)

and rewriting the determinant using Ghost degrees of freedomwe obtain the
following contribution to the Lagrangian

LGhost = c̄c+ c1c̄
δf

δφ′† c. (4.28)

Recall that the EFT is only valid for p2 � Λ2
New which leads to

ΛNew ≈ 1
√
c1

(4.29)



4.2. REPRESENTATION INDEPENDENCE 57

this means the ghosts will have masses of the order of the scale of new
physics. Essentially the ghosts decouple just as the other heavy degrees of
freedom. We can see this for an explicit transformation

f(φ) = �φ† + λφ†φ†φ (4.30)
⇒ c̄(1 + c1�+ 2c1λφ

†φ)c (4.31)

we will rescale the ghost fields to normalize the kinetic term, i.e. c′ = c√
c1

c̄′(Λ2 +�+ 2λφ†φ)c′ (4.32)

For this argument to hold we need at least one φ† in the transformation f .
Another point of view is that the ghosts will only appear in loops, where if
we use a generic transformation

φ = φ′ +
( 1

M2

)n
f(φ′) (4.33)

then we can rewrite∫
Dφ =

∫
Dφ′ det

δφ

δφ′ (4.34)

δφ(x)

δφ′(x′)
= δ(x− x′) +

( 1

M2

)n
f ′(φ′(x))δ(x− x′) + . . . (4.35)

det
δφ(x)

δφ′(x′)
=

∫
Dc̄

∫
Dc exp

{
i

∫
dDxc̄(x)

[
1 +

( 1

M2

)n
f ′(φ′)︸ ︷︷ ︸

small perturbation

]
c(x)

}
(4.36)

This means the ghosts enter in the calculations with propagators of the
form

DGhost =
i

1
(4.37)∫

dDk
( i
1

)n
= 0 (4.38)

where in the last line we have calculated the contribution of n ghost field
propagators in dimensional regularization to be zero (property of scaleless
integrals). Next we will address the additional source term. We consider
the n-point Green’s functions

G(n) = 〈0|T (φ(x1) . . . φ(xn))|0〉. (4.39)
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We will assume real fields right now however everything applies to complex
fields as well. The Green’s function under the field redefinition takes the
form

G(n) = 〈0|T ((φ(x1) + c1f
x1) . . . (φ(xn) + c1f

xn))|0〉. (4.40)

As a reminder recall the LSZ expression∫
d4xie

±ipixi〈0|T (φ(x1) . . . φ(xn))|0〉

∼

(∏
i

√
Zi

p2i −m2
i + i0

)
〈p1, p2 . . . |S|pj , pj + 1 . . . 〉︸ ︷︷ ︸

Observable

(4.41)

The statement that physics ought to be unchanged means that the observ-
ables may not be affected by the field redefinitions. Let us look at some
examples

φ = φ+ c1φ = (1 + c1)φ (4.42)

For the four point functions this means

G′ = (1 + c1)
4〈0|T (φ(x1)φ(x2)φ(x3)φ(x4))|0〉. (4.43)

This change in the Green’s functions under the field redefinition is compen-
sated by the accompanying shift in the Wavefunction renormalization. Let
us look at a more complicated example,

φ → (1 +
α

M2
�)φ (4.44)

The physical matrix element in the original theory reads

G = −λ (4.45)

After the field redefinition the change in the Lagrangian is

δL = − α

M2
φ�(�+m2 λ

3!
φ2)φ (4.46)

The matrix element with the new Lagrangian reads

G = −λ
(
1− α

M2

1

3!
3!

4∑
i=1

p2i

)
(Z1/2)4 (4.47)

= −λ
(
1− α

M2
4m2

)
(Z1/2)4 (4.48)
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where the last term comes from LSZ. The wavefunction renormalization
must cancel the change for physics to be unchanged. Let us calculate the
wavefunction renormalization, that is the residue of the dressed propagator.

D
i

p2 −m2
+

2α

M2

i

p2 −m2
(−ip2)(p2 −m2)

i

p2 −m2
(4.49)

=
i

p2 −m2

(
1 +

2α

M2
p2
)

(4.50)

=
i

p2 −m2

(
1 +

2α

M2
m2
)
+ non-pole-terms (4.51)

Z =
(
1 +

2α

M2
m2
)

(4.52)

Z2 =
(
1 +

2α

M2
m2
)2

= 1 +
4α

M2
m2 +O(1/M4) (4.53)

Insert this WFR constant into G gives

G = −λ+O(1/M4) (4.54)

which is indeed the same matrix element.

4.3 Matching & Loops
Let us recall the matching procedure, which comprises of calculating the
n-point Green’s functions of the degrees of freedomin the full and effective
theory and then demanding that these are the same at low energies. For
tree level it is intuitive this procedure works, as everything in the full theory
is polynomial in external momenta and the heavy degrees of freedomare
always far from being on shell. The EFT is local i.e. all polynomial terms,
that respect the symmetries„ are present therefor matching will always work.
However this is not so clear with loops? We have several problems to address
here

• The loop momentum k can be such that heavy degrees of freedomare
close to on-shell

• UV-divergences need to be dealt with (both in full theory and EFT)

• Loop contributions are not polynomial in momenta. Leff is local,
i.e. Wilson coefficients can only absorb polynomial dependence. This
means the nonanalytic parts have to be the same in EFT and full
theory.
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• Due to renormalization Wilson coefficients will depend on renormal-
ization scale µ. This will lead to problems with logarithms becoming
large at low energies.

We will address the above points in the following, where we perform
matching at one loop. Let us compute the two point function to one loop,
i.e. in the full theory we have the following diagrams

(a) (b) (c) (d)

λL λHL g2 g2

(4.55)

In the EFT the only diagram contributing at one loop is

λ̃

(4.56)

Let us calculate the full theory result first. Diagram (a)

= −iΣ(a) (4.57)

Σ(a) = i(−iλL)
1

2

∫
dDk

(2π)D
i

k2 −m2
µ2ε (4.58)

=
λL

2
(4π)−D/2Γ(1− D

2
)(m2)D/2−1µ2ε (4.59)

=
m2λL

32π2

[
−1

ε
+ γE − ln 4π︸ ︷︷ ︸

MS≡0

−1 + ln
m2

µ2

]
+O(ε) (4.60)

One can redefine µ to absorb the additional finite (nonpole in ε) parts

µ̃2 = µ2eγE4π (4.61)
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This leads to

Σ(a) =
m2λL

32π2

[
−1

ε
− 1 + ln

m2

µ̃2

]
(4.62)

Diagram (b)

= iΣ(b) (4.63)

Σ(b) =
λHL

32π2
M2
[
−1

ε
− 1 + ln

M2

µ̃2

]
(4.64)

Diagram (c)

Σ(c) =
i

2
(−ig2)

i

−M2

∫
dDk

(2π)D
i

k2 −m2
µ̃2ε (4.65)

=
g2

32π2

m2

M2

[
+
1

ε
+ 1− ln

m2

µ̃2

]
(4.66)

Diagram (d) is the first non-trivial one

Σ(d) = i(ig2)

∫
dDk

(2π)D
i2µ̃2

[(k + p)2 −m2][k2 −M2]
(4.67)

For the purpose of matching we do not need the complete expression for the
above integral, we only need the parts polynomial in external momenta and
the light mass. This is what makes matching worthwhile.

Σ(d) =
g2

16π2

[
−1

ε
− 1 + ln

M2

µ̃2

]
+

g2

16π2

[
− p2

2M2
− m2

M2
ln

m2

M2
+O(1/M4)

]
(4.68)

The diagram in the EFT is

ΣEFT =
λ̃

32π2
m̃2
[
−1

ε
− 1 + ln

m̃2

µ̃2

]
(4.69)

Now we need to deal with the divergences in the full and the EFT.
To that end we use MS prescription and drop the divergent parts, i.e. 1

ε .
This amounts to a redefinition of the appropriate bare couplings in the
Lagrangian. We will use the same approach in the full and effective theory.
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After the Green’s functions have been rendered finite we demand that the
two expressions coincide, i.e.

∆ = Σfull − Σeft (4.70)
= 0 (4.71)

which gives a condition on the coupling in the full and effective theory. More
exactly we do not demand that the amputated Green’s functions coincide
but rather the physical matrix elements, i.e. we still need to apply the LSZ
formalism. For the effective Lagrangian we can write

Leff =
1

2
∂µφ

0∂µφ0 − m̃0

2
(φ0)2 − λ̃0

4!
(φ0)4 (4.72)

where we have indicated the bare coupling and fields with an index 0. We
will replace the bare fields and couplings with renormalized expressions

φ0 = φZ
1/2
φ (4.73)

m̃0 = m̃Zm (4.74)
λ̃0 = λ̃Zλ (4.75)

Inserting these into the effective Lagrangian

Leff =
1

2
∂µφ∂

µφZφ − m̃

2
ZφZm(φ)2 − λ̃

4!
ZλZ

2
φ(φ)

4 (4.76)

Expanding everything to one loop order, i.e.

Zm = 1 + ~δm (4.77)
Zλ = 1 + ~δλ (4.78)
Zφ = 1 + ~δZ (4.79)
Z2
φ = 1 + 2~δZ (4.80)

The WFR Zφ happens to be 1 to one loop order in the EFT, that is the self
energy is independent of p2. For the two point function we have

∆ = −m̃2 + p2 + (1 + δZ)(m2 − p2) + Σfull − Σeft (4.81)
= 0 (4.82)

An important part is that the difference of the one loop expression has to be
polynomial in the external momenta and masses, i.e. the nonanalytic parts,
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e.g. lnm have to cancel between full and effective theory. We can check
that this is true, i.e. the coefficient of ∆ w.r.t. lnm reads

∆ln =
m2

16π2
lnm

[
λL − 3g2

M2
− λ̃

]
. . . (4.83)

This term has to vanish and indeed if we use the relation we found at tree
order, λ̃ = λL − 3g2

M2 the nonanalytic terms vanish. Let us look at the rest

∆ = −m̃2 + (1 + δZ)m2 +
1

16π2

{m2

2
λL(−1 + ln

m2

µ̃2
) +

M2

2
λHL(−1 + ln

M2

µ̃2
)

+
g2

2M2
m2(1− ln

m2

µ̃2
) + g2(−1 + ln

M2

µ̃2
) +

g2m2

M2
(−1− ln

m2

M2
)

− λ̃

2
m̃2(−1 + ln

m̃2

µ̃2
)
}

+ p2 − (1 + δZ)p2 − g2

32π2

p2

M2
(4.84)

From the last line we can infer

δZ = − 1

32π2

g2

M2
(4.85)

which in principle can be computed from the self energy.
dΣfull
dp2

|p2=m2 = − g2

32π2

1

M2
(4.86)

As we have already discussed the terms proportionl to lnm vanish thus

0 = −m̃2 + (1− 1

32π2

g2

M2
)m2 +

1

16π2

{m2

2
λL(−1) +

M2

2
λHL(−1 + ln

M2

µ̃2
)

+
g2

2M2
m2(1) + g2(−1 + ln

M2

µ̃2
) +

g2m2

M2
(−1 + 1− ln

µ̃2

M2
)

− λL − 3g2/M2

2
m̃2(−1)

}
m̃2 = (1− 1

32π2

g2

M2
)m2 +

1

16π2

{
g2(1 +

m2

M2
) +

M2

2
λHL

}[
−1 + ln

M2

µ̃2

]
(4.87)

When expanding to higher orders in p2 one obtains more mathcing condi-
tions for the Wilson coefficients of higher order, e.g. φL�2φL. The number
of diagrams to consider rises considerably though. Let us stress again that
for purposes of matching we do not need the full expression for the one loop
integrals but rather the expansion in the external momenta.

Comment on power counting in cutoff scheme.
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4.4 Renormalization Group Improved Perturbation
Theory

The Wilson coefficient after one loop matching depend on the full theory
coupling and on the renormalization scale. The renormalization scale de-
pendence can be generically written as

Ci(µ, λ,m) = C
(0,0)
i + λ(µ)

[
C

(1,1)
i ln

m2

µ2
+ C

(1,0)
i

]
+ λ2(µ)

[
C

(2,2)
i ln2

m2

µ2
+ C

(2,1)
i ln

m2

µ2
+ C

(2,0)
i

]
+ . . . (4.88)

where C(n,m) denotes the Wilson coefficient of order n in the power counting
to loop order m, i.e. m ≤ n. Instead of looking at the two point function
we will look at the one loop matching of the φ4 coupling

iΓfull
4 = + +

= −
3λ2

HL

32π2
(−1

ε
+ ln

M2

µ2
+ c) (4.89)

Matching the finite parts

λ̃(µ) = λ(µ) +
3λHL

32π2

[
ln

M2

µ2
+ c
]

(4.90)

A convenient choice for the scale is µ ∼ M , since otherwise the log-term can
become large. The one loop 4 point function in the EFT is given by

iΓeft
4 = + + +

= λ̃0

[
1 +

3λ̃0

32π2
(−1

ε
+ ln

m2

µ2
+ f(p1, p2, p3)

]
(4.91)

= λ̃(µ)
[
1 +

3λ̃(µ)

32π2
(ln

m2

µ2
+ f(p1, p2, p3)

]
(4.92)
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where now λ̃(µ) is the MS renormalized coupling in the EFT. In the last
line we see that the scale in this amplitude should be of order µ ∼ m such
that the logs are kept small.
Problem

• Matching requires µ ∼ M

• EFT matrix element requires µ ∼ m

• but m � M

This problem appears in any one loop calculation with two widely separated
scales m and M . Trace of this is terms proportional to

ln
m2

M2
= ln

m2

µ2
+ ln

µ2

M2
(4.93)

which lead to a breakdown of perturbation theory for m � M even for small
coupling λ. The way out is the Renormalization Group Equation (RGE)

dλ̃(µ)

d lnµ
= µ

dλ̃(µ)

dµ
= β(λ(µ)) (4.94)

for the coupling in the effective theory. In general the equation for any
Wilson coefficient is

dCi(µ)

d lnµ
= γij(µ)Cj(µ), (4.95)

This is a matrix equation and accounts for possible mixing of the operators
with the same quantum numbers (via loop effects).

In general the strategy can be depicted in the following way

µ

M Match at scale µ ∼ M

Match at scale µ ∼ M with rundown coupling

Renormalization Group

m
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The bare Green’s functions should not depend on the renormalization scale
µ, which lead to the following differential RGE

d

d lnµ
Γ = 0 (4.96)

⇒ d

d lnµ
λ̃(µ) = β(λ) =

3λ̃(µ)

16π2
+ . . . (4.97)

The solution (via separation of variable) reads

λ̃(µ)∫
λ̃(µ0)

dλ̃

λ̃2
=

3

16π2

lnµ∫
lnµ(0)

d lnµ′

1

λ̃(µ)
− 1

λ̃(µ0)
=

3

16π2
ln

µ

µ0

λ̃(µ) =
λ̃(µ0)

1− 3
16π2 λ̃(µ0) ln

µ
µ0

(4.98)

This equation is only accurate up to order λ, if we want to improve we need
β to oder λ3

µ
dλ̃

dµ
= β(λ̃) = λ̃

[
3

λ̃

16π2
− 17

3

( λ̃

16π2

)2
+ . . .

]
⇒ 3

16π2
ln

µ

µ0
=

1

λ̃(µ0)
− 1

λ̃(µ)
+

17

9

1

16π2
ln

λ̃(µ)

λ̃(µ0)
+O(λ̃) (4.99)

We will use Eq. (4.98) to iteratively get from µ ∼ M to µ ∼ m. This means
that we can treat

• λ̃(µ0) as a small quantity

• λ̃(µ) as a small quantity

• ln µ
µ0

is count as 1
λ̃

Let us stress again that Eq. (4.98) is accurate to O(λ̃). In general we need the
β functions one order higher than the matching caluclation was performed
in.

The bottom up procedure is as follows

• Identify relevant degrees of freedomat low energies
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• Construct the most general Lagrangian consistent with symmetries

– Dimesion of operators as power counting

Leff =
∑

L(n)
eff (4.100)

where terms from L(n)
eff contribute(E

Λ

)n
(4.101)

This means for a given accuracy ∆

∆ =
(E
Λ

)n
(4.102)

ln∆ = n ln
E

Λ
(4.103)

⇒ b =
ln∆

lnE/Λ
(4.104)

– Use field redifinitions to elimiate redundant terms in Leff.

• Perform matching (if possible) to the full theory to fix Wilson coeffi-
cients

• Perfrom RGI, i.e. compute the anomalius dimensions and β functions.
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