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The photon rate

Phys. Lett. B 754 (2016) (ALICE) g [ T o T

2 10k [s] 0:20% ALICE — PDF: CTEQGMS, FF: GRV

Direct photon spectrum in Pb-Pb é;.w’i— T Peinprpres EF’?BDFF&ETEQSMEPSW;
collisions (not originating from qzb*';:m;_ 7 O e
hadron decays) S [ TPOF: EPS09, 602
@ Prompt direct photons, ";m.i }
produced in hard scattering of o ]
partons, dominate at large pr ol !

@ Thermal direct photons, created m_ 'g
at the initial stage of the of g ]
collision, dominate at low pr. ok ’ !
They carry information on the E
temperature, collective behavior “F 3

and time evolution of the B e B B X ',":'z(‘m\;}ﬁ)

quark-gluon plasma
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The thermal photon rate

o Vector current Correlator:
G (£, R) = / Bx e T (£, 2)7%(0, 7))
J =" Qe ey iy
f

@ Spectral representation:

vie oy [Cdw = coshlw(B/2 — t)] 1
G (t, k) _/0 27 7wk snh@d2) P T

o Differential photon emission rate per unit volume:

Bk —plu(k, k)

dr(k) = €2
(k) = & Gryoak ek —1

k:‘/}"
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Photon rate and spectral function

@ Define the linear combination:

.....

p(w, k,A) = (67 = K'Y p¥ + MK K pP = p%), K =Ki/k

for example: p(w, k, 1) = p(w, k) — p™(w, k) = —pF(w, k)

@ The photon rate can be defined in terms of p(w, k, \):

A3k p(k, k,\)
(2m)32k efk —1

dry(k) = e?
this expression is independent of A, due to current conservation:

(2o (w, k) = KTkl (w, k)
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Photon rate and spectral function

From now on we focus on \ = —2.

p = plw, kA= =2) = (87 = 3K'K)p¥ (w, k) + 2p°(w, k)

Properties
@ Non-negative for w < k

o In vacuum, Lorentz invariance and transversity of G#*(t, k) imply:

‘pA:—Z ‘vac =0 ‘
At T > 0 no new UV divergences appear = p is UV-finite at T > 0
@ OPE for the Euclidean correlator in momentum space (for A = —2):
o Power counting: G(w, k) e (Og)Jw2+ ...

oo

o Charge conservation: G(wp, k) huét 0, for w, #0
—

Gwn k) ~  k*(Ou)/w}

Wp—00

v
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Photon rate and spectral function

Sum rule

The expansion of the dispersive representation

G (wn, k) = /OOO dw plw, k)

o0
—4
o oS ’/Tw%/(; dw wp(w, k) +O0(w, ")

combined with the OPE, implies the sum rule:

Jo© dw wp(w, k) =0
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Photon rate and spectral function

Effective diffusion coefficient

We compute the effective diffusion coefficient (proportional to the photon
rate):

D) = S xs = [ dxUP(°(0)

— N;=2QCD LO ag=0.25
N=4 SYM AdS/CFT

Perturbative QCD:
hep-ph/0111107 (JHEP)

AdS/CFT: hep-ph/0607237
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Lattice setup

e N¢ =2, O(a)-improved Wilson fermions

T (Mev) T/ TC ﬁLAT B/a L/a mm(Z Gev) (MeV) Nmeas

250 1.2 53 12 48 12 8256
" " 55 16 64 " 4880
583 24 96 9600

500 2.4 6.04 16 64 8064

@ Continuum limit at T = 250 MeV

@ Four independent discretizations of the isovector vector correlator

G*=2(t, k) are considered

o local or exactly-conserved lattice vector current
o in the local-conserved case, two different definitions: conserved current
defined on the site or in the midpoint of the link

@ Projection to all spatial momenta, on- and off-axis, such that k3 < 2
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Lattice setup

Continuum limit

@ Tree-level improvement of the correlator:

-,

cont.t.l

G=72(t, k)

lat.t.]

GM*="2(t, k) — (t, k)

@ A piecewise spline interpolation of the correlators is performed before
taking the combined continuum limit of the four discretizations

kB=m,t=p3/3
@ The coarsest ensemble .
B/a =12 is not included Lo
. . 072 | LCsite et
in the continuum s
. 07
extrapolation .
<L 068
@ In the subsequent s "
. 0.66
analysis we use the H :
. 0.64 | o
continuum-extrapolated a
0.62

Correlator Wlth t Z B/4 0 o.oloz 00-04 o,(;os 01;08 0.01

o/p?
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Fits to Padé ansatz

Padé ansatz for the spectral function
plw, k) A(l + Bw?)
tanh(wB/2) (w2 + a2)[(w + wo)? + b?][(w — wo)? + b?]

o plw, k) ~ 1/w*, consistent with OPE

o At small k, expect a ~ Dk? and wp, b ~ O(T)
o At every fixed k, 4-parameter fit:
o scan in the non-linear parameters (a, b, wo)
o the value of B is fixed by imposing the sum rule = B = B(a, b, wy)
o the value of A is fixed by x? minimization
e It turns out that the x? has a flat valley = no strong constraints on
the shape of the spectral function and on the value of the photon
emission rate
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Strategy for the global fit (1)

One may try to fit simultaneously data with different momenta, hoping to
find stronger constraints

Polynomial ansatz for the k-dependence of the nonlinear parameters J

a(k) = ag + axk?,  b(k) = by + bok?, wo(k) = W + Wak?

@ Ny momentum values are included in the fit
@ Scan in the non-linear parameters (ao, a2, bo, bo, Wo, Wa)

e At each k, B is determined by imposing the sum rule =
B = B(ao, a2, bg, bo, Wo, Wa; k)
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Strategy for the global fit (2)

o Ny different values of A are determined by x? minimization, at fixed k

e Taking into account the correlation between data at different Euclidean
time

o But multiplying by x = 0.85 the off-diagonal elements of the
covariance matrix

o The regularization is necessary not because the covariance matrix is
poorly determined, but because the most accurate modes still suffer
from cutoff effects

o Global x?%: Xél = YNy 2(k)

o At this stage, we neglect the correlation between data at different k

o | N = N + 6| fit parameters
° degrees of freedom (N; = 7)

@ Errors on the fit parameters determined by finding the hypersurface
b2 2 _
with Xgl — Xgi(min) = 1
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Fits to Padé ansatz

Results: correlator for the smallest XZr/ we found

kB=x/2 kB=m/V2

0.901 0.825
. — Global fit — Global fit
0.904 } | Lattice data 0.820 { | Lattice data
gU.QDZ :\?
;{ i 0.815
4? 0.900 ';
l@ 0.898 %v_z oee
0.896/ 0.805|
0.894 0.25 0.25 0.30 0.35 0.40 0.45 0.50
]
orssl — Global fit @ 3 momenta fitted
Lattice data .
oo simultaneously:
§o.745 kﬁ: (7'('/2,7'(-/\/5, \/§7T/2)
7 o Np = 9 fit parameters
;\i 0.735]
) o dof. =12
0.725 i o Xé_//dof = 063

0.25 0.30 035 0.40 0.45 0.50
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Fits to Padé ansatz

Results: Deg

X3 /d.of. = 0.63

0.7

0.6

05

Deff/f@
o o
W ~

0.2

0.1

0.0

— N;=2QCDLO ay —0.25

N=4 SYM AdS/CFT

I | Global fit of lattice data
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Fits to Padé ansatz

Conclusions

o Global fits, including data at multiple momentum values, allow to
significantly constrain the shape of the spectral function and the value
of the photon rate

@ However, we cannot exclude the existence of other local minima of
Xﬁ/, characterized by very different values of these observables

@ We plan on computing our observables around other local minima of
Xé/: and on extending our analysis to all the momentum values
available

e A Euclidean correlator at zero virtuality (— imaginary spatial
momentum) can be used to exclusively probe the photon rate, rather
than the full (w, k) dependence

TN
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