Exercise sheet 11
 Theoretical Physics 6a (QFT): SS 2019

24.06.2019

Exercise 1. (20 points) : Wick rotation

Consider the integral in D-dimensions:

$$
I=\int \frac{d^{D} k}{(2 \pi)^{D}} \frac{1}{\left(k^{2}-\Delta+i \varepsilon\right)^{2}} .
$$

In the lectures we performed this integral using the Wick rotation with $\Delta>0$. Go through the same steps as in the lecture notes to show that the Wick rotation method still works for $\Delta<0$. What is the difference between both cases?

Exercise 2. (40 points) : Pauli-Villars regularization

Regularize the 4 dimensional integral

$$
\begin{equation*}
I=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{\left(k^{2}-\Delta+i \varepsilon\right)^{2}}, \tag{1}
\end{equation*}
$$

using the Pauli-Villars regularization as:

$$
\begin{equation*}
I \rightarrow \int \frac{d^{4} k}{(2 \pi)^{4}}\left\{\frac{1}{\left(k^{2}-\Delta+i \varepsilon\right)^{2}}-\frac{1}{\left(k^{2}-\Lambda^{2}+i \varepsilon\right)^{2}}\right\} \tag{2}
\end{equation*}
$$

with fixed mass scale $\Lambda^{2} \gg \Delta$.
(a)(30 points)

Using Wick rotation, show that the 4 dimensional integral of Eq. (2) is given by:

$$
I=-\frac{i}{(4 \pi)^{2}} \ln \frac{\Delta}{\Lambda^{2}}
$$

(b) (10 points)

Compare this result with the corresponding one using dimensional regularization (expression from the lecture notes). Which identification on Λ has to be made to obtain the result of dimensional regularization ?

Exercise 3. (40 points) : Feynman parameterizations

Prove the following generalizations of the Feynman parametrization (by explicitly working out the integrals on the right hand sides):
(a)(20 points)

$$
\frac{1}{A_{1} A_{2} A_{3}}=\Gamma(3) \int_{0}^{1} d z_{1} \int_{0}^{z_{1}} d z_{2} \frac{1}{\left[A_{1}+\left(A_{2}-A_{1}\right) z_{1}+\left(A_{3}-A_{2}\right) z_{2}\right]^{3}}
$$

(b) (20 points)

$$
\frac{1}{A^{\alpha} B^{\beta}}=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \int_{0}^{1} d x \frac{x^{\alpha-1}(1-x)^{\beta-1}}{[B+(A-B) x]^{\alpha+\beta}}
$$

