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1. Reading List

1. Kogut, sections V-VI (p. 681-694)

2. Smit, sections 4.1 and 4.5 (p. 83-85, 97-98)

3. Les Houches Lecture Notes, section 1.5.1 (p. 50-54)

2. The Ising Gauge Model

(a) The Ising model has a global Z2-symmetry σ 7→ −σ. How must a link variable λij
transform in order for the Hamiltonian

H = −J
∑
(i,j)

σiλijσj

to be invariant under local Z2-transformations σi 7→ ωiσi with arbitrary ωi ∈ Z2 ?

(b) Show that the product of link variables along an arbitrary closed path is invariant
under the transformations found in the preceding problem (gauge transformations).

(c) Consider now a theory of only link variables with the Hamiltonian

H = −
∑
i

∑
µ<ν

λi,i+µ̂λi+µ̂,i+µ̂+ν̂ , λi+ν̂,i+µ̂+ν̂λi,i+ν̂

(i.e. the product of the link variables around each plaquette of the lattice) and show
that it is invariant under gauge transformations.

(d) Show that in the case D = 2 the theory from the preceding problem (the Ising
gauge model) can be written as a collection of Ising models that become uncoupled
in the infinite-volume limit.

3. Elitzur’s Theorem

(a) The spontaneous magnetization is defined by limh→0 limV→∞〈λij〉h (with the limits
taken in that order), where

〈O〉h =

∑
{λ}O(λ)e−βH(λ)+h

∑
(i,j) λij∑

{λ} e−βH(λ)+h
∑

(i,j) λij



is the expectation value in the presence of a homogeneous external field. Consider
the gauge transformation

ωi =

{
−1, i = n

+1, sonst

and use it to show that

〈λn,n+µ̂〉h = −〈λn,n+µ̂e−2h
∑
µ(λn,n+µ̂+λn−µ̂,n)〉h .

(b) Use the result of the preceding problem to derive the bound 2|〈λn,n+µ̂〉h| ≤ |〈λn,n+µ̂〉h|·
|1− e4Dh|

(c) Conclude that the spontaneous magnetization has to vanish in the Ising gauge
model.

4. Wilson Loops in the Ising Gauge Model

For a closed loop Γ on the lattice we defined PΓ as its perimeter, AΓ as the area of
the minimal surface it encloses, and

WΓ =
∏
`∈Γ

λ`

as the corresponding Wilson loop.

(a) Use the formula of problem 6 (a) from problem sheet 2 to write the expectation
value of the Wilson loop as

〈WΓ〉 =

∑
{σ}
∏

Plaq(1 + λλλλ tanh β)
∏

` λ`∑
{σ}
∏

Plaq(1 + λλλλ tanh β)
.

(b) For high temperatures we can expand numerator and denominator in powers of
κ = tanh β (and accordingly in terms of plaquettes). Which geometric condition
must be fulfilled in order to obtain a non-vanishing contribution? What is the
leading contribution? Show that it yields an area law

〈WΓ〉 = e−σAΓ

and determine the value of σ.

(c) For low temperatures (and D > 2) we expand around the ground state in which all
plaquettes take the value take the value +1; one of many realizations of this state
that are equivalent up to gauge transformations is λ` = +1 for all links. Explain
why the contribution of a state with n flipped links λ` = −1 to the numerator of
〈WΓ〉 is given by (V−2PΓ)n

n!
e−4n(D−1)β up to exclusion effects (which become negligible

in the infinite-volume limit and for long paths). Also explain why the corresponding
contribution to the denominator is given by V n

n!
e−4n(D−1)β. Conclude that this results

in a perimeter law
〈WΓ〉 = e−αPΓ

and determine the value of α.



(d) How would you proceed in each case in order to derive higher-order corrections to
the results of the preceding problems?

5. Scalar U(1) Gauge Theory

(a) Consider the theory of a complex scalar field φ coupled to Maxwell electrodynamics
with Lagrangian density

L = −1

4
FµνF

µν +
1

2
|Dφ|2 − m2

2
|φ|2 ,

where Dµ = ∂µ− ieAµ is the covariant derivative, and Fµν = − i
e
[Dµ, Dν ] = ∂µAν −

∂νAµ is the field strength tensor. Show that the theory is invariant under gauge
transformations

φ 7→ eieχφ Aµ 7→ Aµ + ∂µχ

with an arbitrary function χ ∈ C∞(R1,3).

(b) Formulate the naive discretization of this theory (continuing it to Euclidean metric
first) and show that it is not invariant under the discrete version of the gauge
transformation. Where does it fail, and why?

(c) Consider the parallel transporter along a path Γ (Wilson line)

UΓ = eie
∫
Γ dx

µAµ

and determine its behavior under gauge transformations.

(d) Conclude that expressions of the form φ∗(y)UΓφ(x) are gauge-invariant if Γ leads
from xto y. What can you say about expressions of the form f(UΓ) if Γ is a closed
curve?

(e) Discretize the action by introducing link variables Uµ(x) with the transformation
behavior of a Wilson line from x to x+aeµ and using the discrete covariant derivative
∆+
µφ(x) = a−1 (φ(x+ aµ̂)− Uµ(x)φ(x)). Show that this discretization is invariant

under gauge transformations and has the correct continuum limit. (Hint: identify
Uµ(x) = eieaAµ(x)).

(f) Consider the alternative discretization of the Maxwell term given by

S = β
∑
x

∑
µ<ν

Re Uµν(x) ,

where Uµν(x) = U∗ν (x)U∗µ(x + aν̂)Uν(x + aµ̂)Uµ(x) is the directed product of the
link variables around a plaquette in the (µ, ν) plane. Show that this discretization
is invariant under gauge transformations and has the correct continuum limit for a
suitably chosen value of the parameter β.


