Problem Sheet 4

for the course "Introduction to Lattice Gauge Theory" Summer 2019

Lecturer: PD Dr. G. von Hippel

1. Reading List

- 1. Smit, section 3.9 (p. 60-67)
- 2. Gattringer/Lang, chapter 4 (p. 73-79, 89-100)
- 3. Les Houches Lecture Notes, sections 6.2.1-6.2.2 (p. 346-357)
- 2. Markov Chains

Let X be a finite set of states, P a probability distribution on X, and $O_i : X \to \mathbb{R}$ a family of functions (observables) on X. In order to determine

$$\langle O_i \rangle \equiv \sum_{s \in X} O_i(s) P(s)$$

we seek a method to generate a sequence of N states $s_k \in X$ that are distributed according to P such that

$$\overline{O}_i \equiv \frac{1}{N} \sum_{k=1}^N O_i(s_k) = \langle O_i \rangle + \mathcal{O}(N^{-1/2}) \,.$$

One possibility to achieve this is by mans of a Markov chain.

A Markov chain $(s_k)_{k\in\mathbb{N}}$ on X is a sequence of states $s_k \in X$, where s_{k+1} is generated from s_k by a stochastic process with constant transition probability for each pair of states (Markov process). We represent a Markov process by a matrix T, the elements $T_{s's}$ of which give the probability to transition from s to s'. Clearly, T must satisfy

$$T_{s's} \ge 0$$
 für alle s, s' und $\sum_{s'} T_{s's} = 1$ für alle s (1)

We also demand that the Markov process be aperiodic, i.e.

$$\sum_{s} T_{s's} P_s = P_{s'} \text{ für alle } s', \text{ und}$$
(2)

$$T_{ss} > 0$$
 für alle s. (3)

Finally, we demand the Markov process to be ergodic, i.e. for every non-empty subset $S \subset X$ there exists a pair of states s, s' with $s \in S, s' \notin S$, and $T_{s's} > 0$.

(a) Show that the transition probability

$$T_{ij}^{0} = \begin{cases} \frac{1}{3} \text{ für } i = j, i = j \pm 1 \mod |X|, \\ 0 \text{ sonst}, \end{cases}$$

on $X = \{0, ..., |X| - 1\}$ satisfies our demands w.r.t the probability distribution $P_0(s) = \frac{1}{|X|}$.

(b) Show that the transition probability

$$T_{ij} = T_{ij}^0 A_{ij} + \delta_{ij} \sum_k T_{kj}^0 (1 - A_{kj})$$

with

$$A_{ij} = \min\{1, P(i)/P(j)\}$$

on $X = \{0, ..., |X| - 1\}$ satisfies our demand w.r.t the (arbitrary) probability distribution P(s).

(c) Let T now be a Markov process satisfying our demand w.r.t. some probability distribution P. Let \mathcal{H} be the space of all functions $f : X \to \mathbb{R}$ with the norm $\|f\|_1 = \sum_{s \in X} |f(s)|$. We define an operator \hat{T} on \mathcal{H} by

$$(\hat{T}f)(s') = \sum_{s \in X} T_{s's} f(s)$$

Show: For all $f \in \mathcal{H}$ the inequality $\|\hat{T}f\|_1 \leq \|f\|_1$ holds. (Hint: Decompose $f = f_+ - f_-$ with $f_{\pm} \geq 0$.)

- (d) Show: $P \in \mathcal{H}$ is the only eigenvector to the eigenvalue 1 of \hat{T} . (Hint: Consider the action of \hat{T} on f_{\pm} .)
- (e) Let us defined a scalar product on \mathcal{H} by

$$(f,g) = \sum_{s \in X} \frac{f(s)g(s)}{P(s)}$$

and let $||f|| = \sqrt{(f, f)}$ be the corresponding norm. Show: if T satisfies our demands, then so does the Markov process with associated operator $\hat{Q} = \hat{T}^{\dagger}\hat{T}$, where \hat{T}^{\dagger} is defined w.r.t. the scalar product defined above.

- (f) Let now $\mathcal{H}_0 = \{f \in \mathcal{H} | \sum_{s \in x} f(s) = 0\}$. Show: there exists a $\rho \in [0; 1)$ such that $\|\hat{T}f\| \leq \rho \|f\|$ for all $f \in \mathcal{H}_0$. (Hint: Consider the spectrum of \hat{Q} on \mathcal{H}_0).
- (g) Consider now a Markov chain with initial state s_1 . Show: The probability $P_k(s)$ that $s_k = s$ tends to P(s) for $k \to \infty$ as

$$P_k(s) = P(s) + \mathcal{O}(e^{-k/\tau})$$

with the so-called exponential autocorrelation time $\tau = -1/\log \rho$.

(h) Conclude that the elements $(s_k)_{k\gg\tau}$ of a Markov chain constitute an appropriate sample in the sense of the original problem.