Problem Sheet 2

for the course "Introduction to Lattice Gauge Theory" Summer 2019

Lecturer: PD Dr. G. von Hippel

1. Reading List

- 1. Smit, chapter 3 (p. 32–55)
- 2. Parisi, chapters 3 and 4 (p. 22–66)
- 2. The Hopping-Parameter Expansion
 - (a) Consider the theory of a free scalar field ϕ with mass m_0 and split the action into a local term and a term coupling neighboring lattice points. Perform a rescaling $\phi = \sqrt{2\kappa}\varphi$ and determine the value of κ as a function of m_0 for which the coefficient of the local term becomes equal to one.
 - (b) In the following we assume that κ has the value determined in the preceding problem. Which critical value κ_c of κ corresponds to the massless case?
 - (c) Consider now a correlation function of the form $\langle \varphi_x \varphi_y \rangle$ and expand the corresponding path integral into a power series in κ . Which terms give a non-vanishing contribution? Interpret the result graphically.
- 3. From the ϕ^4 -Theory to the Ising Model
 - (a) We now add an interaction $V_I(\phi) = \frac{\lambda_0}{4!} \sum_x \phi_x^4$ to the theory from the preceding problem. For which values of κ and λ as a function of m_0 and λ_0 does the local term take the form $\varphi_x^2 + \lambda(\varphi_x^2 1)^2$?
 - (b) Consider now the limit $\lambda \to \infty$ and show that in this limit the theory can be written as an Ising model with partition function

$$Z = \sum_{\{\sigma = \pm 1\}} e^{-\beta H(\sigma)}$$

and Hamiltonian

$$H = -J\sum_{(i,j)}\sigma_i\sigma_j$$

where the sum over (i, j) run over all pairs of neighboring lattice sites.

- 4. Solution of the Ising model in one dimension and in infinitely many dimensions
 - (a) Write the partition function for the one-dimensional Ising model using the transfer matrix (here literally a 2 × 2 matrix). By diagonalizing the transfer matrix, derive the exact solution for the free energy per site $\frac{F}{L} = -\frac{1}{\beta L} \log Z$ in the thermodynamic limit $L \to \infty$.
 - (b) In the opposite case of infinitely many dimensions, $D \to \infty$, explain why we can replace the sum of the neighboring spins by the expectation value of the spin: $\sum_{(i,j)} \sigma_j \to 2D \langle \sigma_i \rangle$. Use this ansatz to derive an equation which the magnetization $m = \langle \sigma_i \rangle$ has to satisfy.
 - (c) If we use the infinite-dimensional ansatz also in a finite number D of dimensions, we obtain an approximation (the mean-field approximation). Under which conditions does the resulting equation have how many solutions? Interpret the result graphically and physically.
- 5. Low-Temperature Expansion of the Ising Model
 - (a) Find the ground state of the Ising model in a volume $V = L^D$ with periodic boundary conditions, and determine its energy.
 - (b) Considering now states that differ from the ground state by flipping one and two spins, respectively, determine how many such states there are in each case, and determine their energies.
 - (c) Use the results of the preceding two questions to expand the partition function Z into a power series in a suitable variable λ (which is to satisfy $\lambda \to 0$ for $\beta \to \infty$).
 - (d) Explain why the free energy per site, $\frac{F}{V}$, is independent of V.
- 6. High-Temperature Expansion of the Ising Model
 - (a) Show the identity

$$e^{\beta s s'} = \cosh\beta \left(1 + s s' \tanh\beta\right)$$

for $s, s' = \pm 1$.

(b) Use this identity to rewrite the partition function of the Ising model as

$$Z = (\cosh(\beta J))^{V} \sum_{\{n_{ij}=0,1\}} \kappa^{\sum_{(i,j)} n_{ij}} \sum_{\{\sigma\}} \prod_{(i,j)} (\sigma_{i}\sigma_{j})^{n_{ij}}$$

with $\kappa = \tanh(\beta J)$.

- (c) Consider the contribution of an individual spin σ_l to the partition function and show that it contributes a factor 2 to $\sum_{\{\sigma\}} \prod_{(i,j)} (\sigma_i \sigma_j)^{n_{ij}}$ if $\sum_k n_{lk}$ is even, whereas the partition function vanishes otherwise.
- (d) Use the result of the preceding question to rewrite Z as a sum over configurations of only the auxiliary variables n_{ij} , and interpret the result geometrically.