Exercise sheet 5
 Theoretical Physics 6a (QFT): SS 2019

13.05.2019

Exercise 1 (30 points) : Dirac Field

The Free Dirac Lagrangian is given by:

$$
\mathcal{L}=\bar{\psi}(i \not \partial-m) \psi,
$$

where the normal mode expansion for the fields are:

$$
\begin{aligned}
\psi(x) & =\int \frac{d^{3} \vec{k}}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\vec{k}}}} \sum_{s}\left\{a(\vec{k}, s) u(\vec{k}, s) e^{-i k x}+b^{\dagger}(\vec{k}, s) v(\vec{k}, s) e^{i k x}\right\} \\
\bar{\psi}(x) & =\int \frac{d^{3} \vec{k}}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\vec{k}}}} \sum_{s}\left\{b(\vec{k}, s) \bar{v}(\vec{k}, s) e^{-i k x}+a^{\dagger}(\vec{k}, s) \bar{u}(\vec{k}, s) e^{i k x}\right\}
\end{aligned}
$$

(a)(10 points) Show, that the momentum operator

$$
\vec{P}=\int d^{3} \vec{x} \psi^{\dagger}(x)(-i \vec{\nabla}) \psi(x)
$$

can be expressed as:

$$
\vec{P}=\int \frac{d^{3} \vec{k}}{(2 \pi)^{3}} \sum_{s} \vec{k}\left\{a^{\dagger}(\vec{k}, s) a(\vec{k}, s)+b^{\dagger}(\vec{k}, s) b(\vec{k}, s)\right\} .
$$

(b)(10 points) Show, that the conserved charge

$$
Q=\int d^{3} \vec{x} \bar{\psi}(x) \gamma_{0} \psi(x)
$$

can be expressed as:

$$
Q=\int \frac{d^{3} \vec{k}}{(2 \pi)^{3}} \sum_{s}\left\{a^{\dagger}(\vec{k}, s) a(\vec{k}, s)-b^{\dagger}(\vec{k}, s) b(\vec{k}, s)\right\}
$$

and explain the meaning of the relative minus sign in the expression above.
(c)(10 points) Show, that if the Dirac field were quantized according to the Bose-Einstein statistics, that is, through commutators as for the KleinGordon field, one would get the following Hamiltonian:

$$
H=\int \frac{d^{3} \vec{k}}{(2 \pi)^{3}} \sum_{s} E_{\vec{k}}\left\{a^{\dagger}(\vec{k}, s) a(\vec{k}, s)-b^{\dagger}(\vec{k}, s) b(\vec{k}, s)\right\}
$$

and explain why this would lead to unphysical results for the energy spectrum.

Exercise 2 (40 points) : The angular momentum operator

(a)(20 points) Starting from the transformation law for the classical Dirac field under Lorentz transformations, show that the generators of these transformations are given by:

$$
M_{\mu \nu}=i\left(x_{\mu} \partial_{\nu}-x_{\nu} \partial_{\mu}\right)+\frac{1}{2} \sigma_{\mu \nu} .
$$

(b)(20 points) The angular momentum of the Dirac field is given by:

$$
M_{\mu \nu}=\int d^{3} x \psi^{\dagger}(x)\left[i\left(x_{\mu} \partial_{\nu}-x_{\nu} \partial_{\mu}\right)+\frac{1}{2} \sigma_{\mu \nu}\right] \psi(x) .
$$

Prove that

$$
\left[M_{\mu \nu}, \psi(x)\right]=-i\left(x_{\mu} \partial_{\nu}-x_{\nu} \partial_{\mu}\right) \psi(x)-\frac{1}{2} \sigma_{\mu \nu} \psi(x)
$$

Exercise 3 (30 points) : Axial current

For a Dirac field, the transformations

$$
\psi(x) \rightarrow \psi^{\prime}(x)=e^{i \alpha \gamma_{5}} \psi(x), \quad \psi^{\dagger}(x) \rightarrow \psi^{\dagger^{\prime}}(x)=\psi^{\dagger}(x) e^{-i \alpha \gamma_{5}},
$$

where α is an arbitrary real parameter, are called chiral phase transformations.
(a)(15 points) Show that the Dirac Lagrangian density $\mathcal{L}=\bar{\psi}(i \not \partial-m) \psi$ is invariant under chiral phase transformations in the zero-mass limit $m=0$ only, and that the corresponding conserved current in this limit is the axial vector current $J_{A}^{\mu} \equiv \bar{\psi}(x) \gamma^{\mu} \gamma_{5} \psi(x)$.
(b)(15 points) Deduce the equations of motion for the fields

$$
\psi_{L}(x) \equiv \frac{1}{2}\left(\mathbb{1}-\gamma_{5}\right) \psi(x), \quad \psi_{R}(x) \equiv \frac{1}{2}\left(\mathbb{1}+\gamma_{5}\right) \psi(x),
$$

for non-vanishing mass, and show that they decouple in the limit $m=0$.
Hence, the Lagrangian density $\mathcal{L}=i \bar{\psi}_{L} \not \partial \psi_{L}$ describes massless fermions with negative helicity and massless anti-fermions with positive helicity only. This field is called the Weyl field and can be used to describe the neutrinos as far as the latter can be considered as massless.

