Exercise sheet 4
 Theoretical Physics 6a (QFT): SS 2019

06.05.2019

Exercice 1. (20 points) Dirac representation

In the standard Dirac representation, the Dirac matrices have the form

$$
\gamma_{s}^{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad \vec{\gamma}_{s}=\left(\begin{array}{cc}
0 & \vec{\sigma} \\
-\vec{\sigma} & 0
\end{array}\right),
$$

where $\vec{\sigma}$ is the vector of the 3 Pauli matrices:

$$
\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Using this representation of the gamma matrices, show the following identities:

$$
\begin{aligned}
{\left[\gamma^{\mu}, \gamma^{\nu}\right]_{+} } & \equiv \gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu} \mathbb{1}, \\
\gamma^{\mu \dagger} & =\gamma_{0} \gamma^{\mu} \gamma_{0} .
\end{aligned}
$$

Exercise 2. (30 points) : Weyl representation

In the so-called Weyl representation, the Dirac matrices have the form

$$
\gamma_{W}^{\mu}=\left(\begin{array}{cc}
0 & \sigma^{\mu} \\
\bar{\sigma}^{\mu} & 0
\end{array}\right)
$$

where $\sigma^{\mu}=(1, \vec{\sigma})$ and $\bar{\sigma}^{\mu}=(1,-\vec{\sigma})$.
(a)(10 points) Write down a unitary matrix S connecting both representations $\gamma_{s}^{\mu}=S \gamma_{W}^{\mu} S^{-1}$.
(b)(10 points) Write the γ_{5} matrix in both representations.
(c)(10 points) In the Weyl representation with $\psi=\binom{\psi_{L}}{\psi_{R}}$, show that the bispinors ψ_{L} and ψ_{R} are independent for massless particles, and write down the eigenstates of the chirality operator γ_{5} with their corresponding eigenvalues.

Exercise 3. (50 points) : Dirac matrix calculus

Without using an explicit representation of the gamma matrices, show the following identities:

$$
\begin{aligned}
\gamma_{\mu} \gamma^{\mu} & =4, \\
\operatorname{Tr}\left[\gamma^{\mu} \gamma^{\nu}\right] & =4 g^{\mu \nu}, \\
\operatorname{Tr}[\phi b b \not \subset d] & =4(a \cdot b c \cdot d-a \cdot c b \cdot d+a \cdot d b \cdot c), \\
\gamma_{5} & =\frac{i}{4!} \epsilon_{\mu \nu \alpha \beta} \gamma^{\mu} \gamma^{\nu} \gamma^{\alpha} \gamma^{\beta}, \\
\gamma_{5}^{2} & =1, \\
{\left[\gamma_{5}, \gamma^{\mu}\right]_{+} } & =0, \\
\operatorname{Tr}\left[\gamma_{5}\right] & =0, \\
\operatorname{Tr}\left[\gamma^{\mu} \gamma^{\nu} \gamma_{5}\right] & =0, \\
\operatorname{Tr}\left[\gamma^{\mu} \gamma^{\nu} \gamma^{\alpha} \gamma^{\beta} \gamma_{5}\right] & =4 i \epsilon^{\mu \nu \alpha \beta}, \\
\operatorname{Tr}\left[\gamma^{\mu_{1}} \ldots \gamma^{\mu_{n}}\right] & =0, \text { if } n \text { is odd, },
\end{aligned}
$$

where $\not \phi \equiv a^{\mu} \gamma_{\mu}, \gamma_{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$, and $\epsilon_{0123}=1$

