Exercise sheet 7
 Theoretical Physics 6a (QFT): SS 2019

27.05.2019

Exercise 1. (40 points) : Scalar Quantum Electrodynamics

Consider the Lagrangian for the charged Klein-Gordon Field

$$
\begin{equation*}
\mathcal{L}=\left(\partial_{\mu} \phi\right)^{\dagger}\left(\partial^{\mu} \phi\right)-m^{2} \phi^{\dagger} \phi \tag{1}
\end{equation*}
$$

- Check that this Lagrangian is not invariant under $\mathrm{U}(1)$ gauge transformation of the form $\phi(x) \rightarrow \phi^{\prime}(x)=e^{i \alpha(x)} \phi(x)$;
- Replace the derivatives by the convariant one $D_{\mu}=\partial_{\mu}+i e A_{\mu}$ and check whether now the Lagrangian is invariant under the local symmetry;
- Write down the interaction Lagrangian and identify the terms. Sketch each one as a different diagram;

Exercise 2. (40 points) : Gauge transformation

Consider a state $\left|\Psi_{T}\right\rangle$ which only contains transverse photons. Futhermore, construct a state $\left|\Psi_{T}^{\prime}\right\rangle$ as:

$$
\left|\Psi_{T}^{\prime}\right\rangle=\left\{1+\alpha\left[a^{\dagger}(\vec{k}, 3)-a^{\dagger}(\vec{k}, 0)\right]\right\}\left|\Psi_{T}\right\rangle
$$

with α a constant. Show that replacing $\left|\Psi_{T}\right\rangle$ by $\left|\Psi_{T}^{\prime}\right\rangle$ corresponds to a gauge transformation:

$$
\left\langle\Psi_{T}^{\prime}\right| A^{\mu}(x)\left|\Psi_{T}^{\prime}\right\rangle=\left\langle\Psi_{T}\right| A^{\mu}(x)+\partial^{\mu} \Lambda\left|\Psi_{T}\right\rangle,
$$

where Λ is given by:

$$
\Lambda(x)=\operatorname{Re}\left(i \alpha \frac{\sqrt{2}}{\omega_{k}^{3 / 2}} e^{-i k \cdot x}\right)
$$

Exercise 3. (20 points) : Positronium

Positronium is a bound state of an e^{-}and an e^{+}. Their spins can combine into either total spin $S=0$ or 1 .
(a)(5 points) Show that the corresponding spin wavefunctions are either odd ($S=0$) or even ($S=1$) under exchange of the spins.
(b)(5 points) Write down all allowed total angular momentum values for a positronium state which has orbital angular momentum $L=0$ or $L=1$.
(c)(5 points) Show that for a state of total spin S and orbital angular momentum L, the parity P of the state (eigenvalue of the P operation) is given by $P=(-1)^{L+1}$.
(d)(5 points) Show that for a state of total spin S and orbital angular momentum L, the C-parity C of the state (eigenvalue of the charge conjugation C operation) is given by $C=(-1)^{L+S}$.

