Exercise sheet 6
 Theoretical Physics 6a (QFT): SS 2019

20.05.2019

Exercise 1. (50 points) : Dirac bilinears

Since a spinor turns into minus itself after a rotation over 2π, physical quantities must be bilinears in ψ, so that physical quantities turn into themselves after a rotation over 2π. These bilinears have the general form $\bar{\psi} \Gamma \psi$. There are 16 independent covariant ones related to 16 complex 4×4 matrices:

- $\Gamma_{S}=\mathbb{1}$ (scalar);
- $\Gamma_{P}=\gamma_{5}$ (pseudoscalar);
- $\Gamma_{V}^{\mu}=\gamma^{\mu}$ (vector);
- $\Gamma_{A}^{\mu}=\gamma^{\mu} \gamma_{5}$ (axial vector);
- $\Gamma_{T}^{\mu \nu}=\sigma^{\mu \nu} \equiv \frac{i}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right]$ (tensor).

Without referring to any explicit representation for the Γ matrices,
(a)(10 points) show that $\Gamma^{2}= \pm \mathbb{1}$.
(b)(10 points) show that for any Γ except Γ_{S}, we have $\operatorname{Tr}[\Gamma]=0$. Hint: show first that for any Γ except Γ_{S}, there always exists a Γ^{\prime} such that $\left\{\Gamma, \Gamma^{\prime}\right\}=0$.
(c)(10 points) check that the product of 2 different Γ 's is proportional to some Γ different from Γ_{S};
(d)(10 points) show that the Γ 's are linearly independent, i.e. $\sum_{i} a_{i} \Gamma_{i}=$
$0 \Leftrightarrow a_{i}=0$.
(e)(10 points) and using the Lorentz transformation of the Dirac spinor $\psi^{\prime}\left(x^{\prime}\right)=S(a) \psi(x)$ with $x^{\prime \mu}=a^{\mu}{ }_{\nu} x^{\nu}$, check that the bilinears transform according to their name, i.e. $\bar{\psi}^{\prime} \psi^{\prime}=\bar{\psi} \psi, \bar{\psi}^{\prime} \gamma_{5} \psi^{\prime}=\operatorname{det}(a) \bar{\psi} \gamma_{5} \psi, \bar{\psi}^{\prime} \gamma^{\mu} \psi^{\prime}=$ $a^{\mu}{ }_{\nu} \bar{\psi} \gamma^{\mu} \psi, \bar{\psi}^{\prime} \gamma^{\mu} \gamma_{5} \psi^{\prime}=\operatorname{det}(a) a^{\mu}{ }_{\nu} \bar{\psi} \gamma^{\mu} \gamma_{5} \psi$ and $\bar{\psi}^{\prime} \sigma^{\mu \nu} \psi^{\prime}=a^{\mu}{ }_{\rho} a^{\nu}{ }_{\sigma} \bar{\psi} \sigma^{\rho \sigma} \psi$.

Exercise 2. ($50+10$ bonus points) : Lorentz transformation

Under a Lorentz transformation a_{ν}^{μ}, a spinor $\psi(x)$ transforms according to:

$$
\begin{aligned}
\left(x^{\prime}\right)^{\mu} & =a_{\nu}^{\mu} x^{\nu} \\
\psi^{\prime}\left(x^{\prime}\right) & =S(a) \psi(x) .
\end{aligned}
$$

Give the explicit form of the Lorentz transformation matrices a_{ν}^{μ}
(a)(5 points) describing a finite boost in y-direction and its infinitesimal generator $\left(K_{y}\right)$,
(b)(5 points) describing a finite boost in z-direction and its infinitesimal generator $\left(K_{z}\right)$,
(c)(5 points) describing a finite rotation around the x-direction and its infinitesimal generator $\left(J_{x}\right)$ and
(d)(5 points) describing a finite rotation around the y-direction and its infinitesimal generator $\left(J_{y}\right)$.

Derive the transformation matrices $S(a)$
(e)(15 points) describing a finite and infinitesimal boost in y-direction and
(f)(15 points) describing a finite and infinitesimal rotation around the x-axis.
(g)(10 bonus points) Show, that the infinitesimal generators of the Lorentz
transformation for boosts $\left(K_{i}\right)$ and rotations $\left(J_{i}\right)$ satisfy the algebra relations

$$
\begin{aligned}
{\left[J_{i}, J_{j}\right] } & =-i \epsilon_{i j k} J_{k} \\
{\left[K_{i}, K_{j}\right] } & =-i \epsilon_{i j k} J_{k} \\
{\left[K_{i}, J_{j}\right] } & =-i \epsilon_{i j k} K_{k} .
\end{aligned}
$$

