Exercise sheet 6 Theoretical Physics 6a (QFT): SS 2019

20.05.2019

Exercise 1. (50 points) : Dirac bilinears

Since a spinor turns into minus itself after a rotation over 2π , physical quantities must be bilinears in ψ , so that physical quantities turn into themselves after a rotation over 2π . These bilinears have the general form $\bar{\psi}\Gamma\psi$. There are 16 independent covariant ones related to 16 complex 4×4 matrices:

- $\Gamma_S = \mathbb{1}$ (scalar);
- $\Gamma_P = \gamma_5$ (pseudoscalar);
- $\Gamma_V^{\mu} = \gamma^{\mu}$ (vector);
- $\Gamma^{\mu}_{A} = \gamma^{\mu} \gamma_{5}$ (axial vector);
- $\Gamma_T^{\mu\nu} = \sigma^{\mu\nu} \equiv \frac{i}{2} [\gamma^{\mu}, \gamma^{\nu}]$ (tensor).

Without referring to any explicit representation for the Γ matrices,

(a)(10 points) show that $\Gamma^2 = \pm 1$.

(b)(10 points) show that for any Γ except Γ_S , we have $\text{Tr}[\Gamma] = 0$. *Hint*: show first that for any Γ except Γ_S , there always exists a Γ' such that $\{\Gamma, \Gamma'\} = 0$.

(c)(10 points) check that the product of 2 different Γ 's is proportional to some Γ different from Γ_S ;

(d)(10 points) show that the Γ 's are linearly independent, *i.e.* $\sum_i a_i \Gamma_i =$

 $0 \Leftrightarrow a_i = 0.$

(e)(10 points) and using the Lorentz transformation of the Dirac spinor $\psi'(x') = S(a)\psi(x)$ with $x'^{\mu} = a^{\mu}_{\nu}x^{\nu}$, check that the bilinears transform according to their name, *i.e.* $\bar{\psi}'\psi' = \bar{\psi}\psi$, $\bar{\psi}'\gamma_5\psi' = \det(a)\bar{\psi}\gamma_5\psi$, $\bar{\psi}'\gamma^{\mu}\psi' = a^{\mu}_{\nu}\bar{\psi}\gamma^{\mu}\psi$, $\bar{\psi}'\gamma^{\mu}\gamma_5\psi' = \det(a)a^{\mu}_{\nu}\bar{\psi}\gamma^{\mu}\gamma_5\psi$ and $\bar{\psi}'\sigma^{\mu\nu}\psi' = a^{\mu}_{\rho}a^{\nu}_{\sigma}\bar{\psi}\sigma^{\rho\sigma}\psi$.

Exercise 2. (50 + 10 bonus points): Lorentz transformation

Under a Lorentz transformation a^{μ}_{ν} , a spinor $\psi(x)$ transforms according to:

$$(x')^{\mu} = a^{\mu}_{\nu} x^{\nu}$$

$$\psi'(x') = S(a)\psi(x)$$

Give the explicit form of the Lorentz transformation matrices a^{μ}_{ν}

(a)(5 points) describing a finite boost in y-direction and its infinitesimal generator (K_y) ,

(b)(5 points) describing a finite boost in z-direction and its infinitesimal generator (K_z) ,

(c)(5 points) describing a finite rotation around the x-direction and its infinitesimal generator (J_x) and

(d)(5 points) describing a finite rotation around the y-direction and its infinitesimal generator (J_y) .

Derive the transformation matrices S(a)

(e)(15 points) describing a finite and infinitesimal boost in y-direction and

(f)(15 points) describing a finite and infinitesimal rotation around the x-axis.

(g)(10 bonus points) Show, that the infinitesimal generators of the Lorentz

transformation for boosts (K_i) and rotations (J_i) satisfy the algebra relations

$$[J_i, J_j] = -i\epsilon_{ijk}J_k$$
$$[K_i, K_j] = -i\epsilon_{ijk}J_k$$
$$[K_i, J_j] = -i\epsilon_{ijk}K_k.$$