Effective Field Theory

Lagrangian Formalism

Assignment 1:

Derive the equations of motion for the following Lagrangian densities
(a)* free Dirac field

$$
\begin{equation*}
\mathcal{L}=\bar{\Psi}\left(i \gamma_{\mu} \partial^{\mu}-m\right) \Psi \tag{1}
\end{equation*}
$$

for the field Ψ. Note that

$$
\begin{align*}
\bar{\Psi} & =\Psi^{\dagger} \gamma_{0} \tag{2}\\
\gamma_{\mu}^{\dagger} & =\gamma_{0} \gamma_{\mu} \gamma_{0} \tag{3}
\end{align*}
$$

(b) electromagnetic interaction

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+j^{\mu} A_{\mu} \tag{4}
\end{equation*}
$$

with

$$
\begin{equation*}
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \tag{5}
\end{equation*}
$$

for the field A_{μ}.

Assignment 2 *:

Calculate the conserved current for a Lagrangian density with quartic coupling, i.e.

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2}\left[\partial_{\mu} \Phi \partial^{\mu} \Phi+\partial_{\mu} \varphi \partial^{\mu} \varphi-m^{2}\left(\Phi^{2}+\varphi^{2}\right)\right]-\frac{\lambda}{4}\left(\Phi^{2}+\varphi^{2}\right)^{2} \tag{6}
\end{equation*}
$$

under active rotation of the fields by an angle $\varepsilon(x)$

$$
\begin{equation*}
\Phi(x)^{\prime}=\Phi(x)-\varepsilon(x) \varphi(x) \quad \varphi(x)^{\prime}=\varphi(x)+\varepsilon(x) \Phi(x) \tag{7}
\end{equation*}
$$

The current and its divergence are given by

$$
\begin{equation*}
J^{\mu}=\frac{\partial \delta \mathcal{L}}{\partial \partial_{\mu} \varepsilon}, \quad \partial_{\mu} J^{\mu}=\frac{\partial \delta \mathcal{L}}{\partial \varepsilon} . \tag{8}
\end{equation*}
$$

Can you explain why this is an infinitesimal rotation?
Do you know the corresponding symmetry group?

Assignment 3:

Using the Hamiltonian

$$
\begin{equation*}
H=\frac{1}{2} \int \frac{d k}{(2 \pi)^{3} 2 k_{0}} k_{0}\left[a^{\dagger}(\mathbf{k}) a(\mathbf{k})+a(\mathbf{k}) a^{\dagger}(\mathbf{k})\right] \tag{9}
\end{equation*}
$$

(a) Calculate

$$
\begin{equation*}
H a(\mathbf{k})|E\rangle=(a(\mathbf{k}) H+[H, a(\mathbf{k})])|E\rangle \tag{10}
\end{equation*}
$$

using the commutation relations

$$
\begin{align*}
{\left[a\left(\mathbf{k}^{\prime}\right), a(\mathbf{k})\right]=\left[a^{\dagger}\left(\mathbf{k}^{\prime}\right), a^{\dagger}(\mathbf{k})\right] } & =0 \tag{11}\\
{\left[a^{\dagger}\left(\mathbf{k}^{\prime}\right), a(\mathbf{k})\right] } & =-(2 \pi)^{3} 2 k_{0} \delta^{3}\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \tag{12}
\end{align*}
$$

where $|E\rangle$ are energy eigenstates of the Hamiltonian with eigenvalues e.
(b) Using the relation in Eq. (12) rewrite the Hamiltonian of Eq. (10) such that all creation operators a^{\dagger} are to the left. Compute the integral using a cutoff Λ for the momentum $|\mathbf{k}|$.

Assignment $4^{*}:$

(a) What are the mass dimensions of the fields Ψ, A and φ of Assignment $1 / 2$? Using these mass dimensions determine if the dimension of the following operators in D dimensions

$$
\begin{equation*}
\mathcal{O}_{1}=\varphi \bar{\Psi} \Psi \quad \mathcal{O}_{2}=\bar{\Psi} \gamma_{\mu} A^{\mu} \Psi \quad \mathcal{O}_{3}=\bar{\Psi} \Psi \bar{\Psi} \Psi \tag{13}
\end{equation*}
$$

(b) Let the four fermion operator have a coupling of size $1.16 \times 10^{-5} \mathrm{GeV}^{-2}$. At what scale would that interaction be of natural size.

Assignment 5:

This has nothing to do with Lagrangian formalism (however with dimensional regularization).
Calculate the D-dimensional surface of the unit sphere. Use the following

$$
\begin{equation*}
\left[\int_{-\infty}^{\infty} d x e^{-x^{2}}\right]^{D}=\int_{-\infty}^{\infty} d^{D} x e^{-x^{2}}=\Omega_{D} \int d r r^{D-1} e^{-r^{2}} \tag{14}
\end{equation*}
$$

Note that looking up the definition of the Γ function might prove useful. You should hand in (at least) the assignments with an asterisk.

Please hand in the exercise 29.04. in the lecture.

