Problem Sheet 1
 for the course
 „Introduction to Lattice Gauge Theory"
 Summer 2019

Lecturer: PD Dr. G. von Hippel

1. Reading List

1. Smit, chapter 2 (p. 8-28)
2. Gattringer/Lang, chapter 1 (p. 1-23)
3. Fourier Transform on the Lattice
(a) Show that the matrix

$$
U_{m n}=\frac{1}{\sqrt{N}} \mathrm{e}^{i p_{m} x_{n}}
$$

with $x_{n}=n a, p_{m}=\frac{2 \pi}{L a} m, m, n \in\{1, \ldots, N\}$, is unitary.
(b) Conclude that the Fourier transform on the lattice

$$
\Lambda=\left\{x=\text { an } \mid 0 \leq n_{\mu}<L, \mu=1, \ldots, D\right\}
$$

is given by

$$
\tilde{\phi}_{p}=\sum_{x \in \Lambda} \phi_{x} \mathrm{e}^{-i p . x}
$$

and its inverse by

$$
\phi_{x}=\frac{1}{L^{D}} \sum_{p \in \tilde{\Lambda}} \tilde{\phi} \mathrm{e}^{i p . x}
$$

where the reciprocal lattice in momentum space is defined by

$$
\tilde{\Lambda}=\left\{\left.p=\frac{2 \pi}{L a} m \right\rvert\,-L / 2<m_{\mu} \leq L / 2, \mu=1, \ldots, D\right\} .
$$

(c) Show that in the limit $L \rightarrow \infty$ the Fourier transform becomes

$$
\phi(x)=\int_{-\pi / a}^{\pi / a} \frac{\mathrm{~d}^{D} p}{(2 \pi)^{D}} \tilde{\phi}(p) \mathrm{e}^{i p . x} .
$$

3. The Free Scalar Field on the Lattice
(a) Show that for periodic boundary conditions $\phi_{x+L e_{\mu}}=\phi_{x}$ the identity

$$
\sum_{x \in \Lambda} \phi_{x} \delta_{\mu}^{+} \psi_{x}=-\sum_{x}\left(\delta_{\mu}^{-} \phi_{x}\right) \psi_{x}
$$

holds.
(b) Conclude that the Euclidean action for a free scalar field,

$$
S=\sum_{x \in \Lambda}\left(\frac{1}{2} \delta_{\mu}^{+} \phi_{x} \delta_{\mu}^{+} \phi_{x}+\frac{m^{2}}{2} \phi_{x}^{2}\right)
$$

can be written as

$$
S=\frac{1}{2} \sum_{x, y \in \Lambda} \phi_{x} M_{x y} \phi_{y}
$$

with a matrix M to be determined.
(c) Conclude moreover that the partition function can be written as

$$
Z=\int \mathrm{D} \phi \mathrm{e}^{-S}=\frac{1}{\sqrt{\operatorname{det} M}}=\mathrm{e}^{-\frac{1}{2} \log \operatorname{det} M}=\mathrm{e}^{-\frac{1}{2} \operatorname{tr} \log M} .
$$

(d) Use the generating function

$$
Z(J)=\int \mathrm{D} \phi \mathrm{e}^{-S+\sum_{x} J_{x} \phi_{x}}
$$

and a suitable change of variable to obtain a general expression for the expectation values

$$
\left\langle\phi_{x_{1}} \cdots \phi_{x_{n}}\right\rangle: \equiv \frac{1}{Z} \int \mathrm{D} \phi \mathrm{e}^{-S} \phi_{x_{1}} \cdots \phi_{x_{n}} .
$$

(Hint: use the inverse G of M !)
(e) Visualize this expression for $n=2,4,6$ diagrammatically by sketching a diagram for each summand in which you mark the points x_{i} and join x_{i} and x_{j} by a line if $G_{x_{i} x_{j}}$ occurs in the summand.
(f) Use the Fourier transform to obtain an expression for $G_{x y}$.
(g) Use a suitably chosen contour integral in the complex ($z=\mathrm{e}^{i p_{4}}$) plane to show that in the the limit $L \rightarrow \infty$

$$
\sum_{\mathbf{x}} G_{(\mathbf{x}, t),(\mathbf{0}, 0)} \sim \mathrm{e}^{-\widetilde{m} t}, \quad t \rightarrow \infty
$$

(h) Interpret the result of the preceding question using the transfer matrix, and conclude that the theory indeed describes free particles of mass \widetilde{m}, where $\lim _{a \rightarrow 0} \widetilde{m}=m$.

4. Perturbation Theory and Feynman Diagrams

(a) Consider now an expectation value of the form $\left\langle\phi_{x_{1}} \cdots \phi_{x_{n}} \phi_{z_{1}}^{\nu} \cdots \phi_{z_{m}}^{\nu}\right\rangle$ in the free theory. In which cases are there how many equivalent summands? For $\nu=3,4$ sketch diagrams for the cases $n=2,3,4, m=1,2$. How can one determine the multiplicity of these diagrams from the diagram itself?
(b) Consider now the theory of a self-interacting scalar field ϕ with the action $S(\phi)=$ $\frac{1}{2} \phi^{t} M \phi+\sum_{x} \frac{\lambda}{\nu!} \phi_{x}^{\nu}$, and expand the generating function

$$
Z(J)=\int \mathrm{D} \phi \mathrm{e}^{-S(\phi)+J^{t} \phi}
$$

into powers of λ. Give an expression for expectation values in the interacting theory in terms of expectation values in the free theory. Interpret the result in terms of (Feynman-)diagrams using the answer to the preceding question.
(c) Use the Fourier transform to bring the Feynman diagrams into the momentumspace form familiar from the continuum. What are the crucial differences to the continuum case?
5. Series Expansion of Integrals
(a) Consider the integral

$$
Z(m, \lambda)=\int_{-\infty}^{\infty} \mathrm{d} \phi \mathrm{e}^{-\frac{m^{2}}{2} \phi^{2}-\frac{\lambda}{4!} \phi^{4}}
$$

and use termwise integration to determine its formal expansion in
i. powers of λ and
ii. powers of m.
(b) What can you say based on the coefficients about the convergence and divergence of the respective series?
(c) Use a computer algebra package to find the exact expression for $Z(m, \lambda)$ and compare the graph of $Z(1, x)$ with the series expansions in x and $1 / x$ to first, second, third and fourth order.

