Theoretical Physics 6a (QFT): SS 2019
 Exercise sheet 3

29.04.2019

Exercise 1 (100 points): Klein-Gordon Green's function

Consider the differential equation for the Klein-Gordon Green's function:

$$
\begin{equation*}
\left(\partial_{\mu} \partial^{\mu}+m^{2}\right) G\left(x-x^{\prime}\right)=-\delta^{4}\left(x-x^{\prime}\right) . \tag{1}
\end{equation*}
$$

(a)(20 points) Show that, using a Fourier transformation, the solution of Eq. (1) is formally given as

$$
\begin{equation*}
G\left(x-x^{\prime}\right)=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{e^{-i k\left(x-x^{\prime}\right)}}{k^{2}-m^{2} \pm i \epsilon} . \tag{2}
\end{equation*}
$$

Using the Green's function, show that

$$
\begin{equation*}
\phi(x)=-\int d^{4} x G\left(x-x^{\prime}\right) \rho\left(x^{\prime}\right) \tag{3}
\end{equation*}
$$

is a solution of

$$
\begin{equation*}
\left(\partial_{\mu} \partial^{\mu}-m^{2}\right) \phi(x)=\rho(x) . \tag{4}
\end{equation*}
$$

The expression of Eq. (2) can only be evaluated using a contour deformation for the integration over k^{0}, due to the poles on the real axes at

$$
\begin{equation*}
k^{0}= \pm \sqrt{k^{2}+m^{2}} \tag{5}
\end{equation*}
$$

Consider the three contours in figures 1,2 and 3 .
(b)(20 points) Show, that the retarded Green's function given by

$$
G_{\mathrm{ret}}\left(x-x^{\prime}\right)=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{e^{-i k\left(x-x^{\prime}\right)}}{\left(k_{0}+i \epsilon\right)^{2}-\vec{k}^{2}-m^{2}},
$$

is zero for $t<t^{\prime}$ and that the advanced Green's function given by

$$
G_{\mathrm{adv}}\left(x-x^{\prime}\right)=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{e^{-i k\left(x-x^{\prime}\right)}}{\left(k_{0}-i \epsilon\right)^{2}-\vec{k}^{2}-m^{2}},
$$

is zero for $t>t^{\prime}$.
(c)(20 points) Show, that the Feynman Green's function,

$$
G_{\mathrm{F}}\left(x-x^{\prime}\right)=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{e^{-i k\left(x-x^{\prime}\right)}}{k^{2}-m^{2}+i \epsilon},
$$

defines the integration contour of figure 3, i.e. has its poles at

$$
k_{0}= \pm\left(\sqrt{k^{2}+m^{2}}-i \epsilon\right)
$$

Show, that after evaluating the contour integration:

$$
\begin{aligned}
G_{\mathrm{F}}\left(x-x^{\prime}\right) & =(-i) \int \frac{d^{3} k}{(2 \pi)^{3} 2 E_{k}}\left(\Theta\left(t-t^{\prime}\right) e^{-i k\left(x-x^{\prime}\right)}+\Theta\left(t^{\prime}-t\right) e^{i k\left(x-x^{\prime}\right)}\right) \\
& =(-i)\langle 0| T\left[\phi(x) \phi\left(x^{\prime}\right)\right]|0\rangle .
\end{aligned}
$$

(d)(20 points) Evaluate the spacelike Klein-Gordon propagator, i.e. for $(x-y)^{2}<$ 0 , explicitly in terms of Bessel functions.
(e)(20 points) Can the Klein-Gordon field be interpreted as a one-particle wavefunction in quantum mechanics?

Figure 1: Contour for retarded Green's function with poles at $k_{0}= \pm \sqrt{k^{2}+m^{2}}-i \epsilon$

Figure 2: Contour for advanced Green's function with poles at $k_{0}= \pm \sqrt{k^{2}+m^{2}}+i \epsilon$

Figure 3: Contour for Feynman Green's function with poles at $k_{0}= \pm\left(\sqrt{k^{2}+m^{2}}-\right.$ $i \epsilon)$

