Gauge theories

Gauge theories

Gauge principle

Gauge theories

Gauge principle
(1) Mathematical description of elementary particles in terms of so-called matter fields: $\Psi(x), x=(t, \vec{x})$

Gauge theories

Gauge principle

(1) Mathematical description of elementary particles in terms of so-called matter fields: $\Psi(x), x=(t, \vec{x})$
(2) Define action of group G on set M of fields:

$$
\Psi(x) \mapsto \Psi^{\prime}(x)=A(g, \Psi(x))
$$

Gauge theories

Gauge principle

(1) Mathematical description of elementary particles in terms of so-called matter fields: $\Psi(x), x=(t, \vec{x})$
(2) Define action of group G on set M of fields:

$$
\Psi(x) \mapsto \Psi^{\prime}(x)=A(g, \Psi(x))
$$

(3) Construct (free) theory which is invariant under the action of all group elements (symmetry)

Gauge theories

Gauge principle

（1）Mathematical description of elementary particles in terms of so－called matter fields：$\Psi(x), x=(t, \vec{x})$
（2）Define action of group G on set M of fields：

$$
\Psi(x) \mapsto \Psi^{\prime}(x)=A(g, \Psi(x))
$$

（3）Construct（free）theory which is invariant under the action of all group elements（symmetry）
（9）Require invariance under local transformations：

$$
\Psi(x) \mapsto A(g(x), \Psi(x))
$$

Gauge theories

Gauge principle

(1) Mathematical description of elementary particles in terms of so-called matter fields: $\Psi(x), x=(t, \vec{x})$
(2) Define action of group G on set M of fields:

$$
\Psi(x) \mapsto \Psi^{\prime}(x)=A(g, \Psi(x))
$$

(3) Construct (free) theory which is invariant under the action of all group elements (symmetry)
(9) Require invariance under local transformations:

$$
\Psi(x) \mapsto A(g(x), \Psi(x))
$$

(5) Introduce additional so-called gauge fields to warrant invariance

Gauge theories

Gauge principle

(1) Mathematical description of elementary particles in terms of so-called matter fields: $\Psi(x), x=(t, \vec{x})$
(2) Define action of group G on set M of fields:

$$
\Psi(x) \mapsto \Psi^{\prime}(x)=A(g, \Psi(x))
$$

(3) Construct (free) theory which is invariant under the action of all group elements (symmetry)
(9) Require invariance under local transformations:

$$
\Psi(x) \mapsto A(g(x), \Psi(x))
$$

(5) Introduce additional so-called gauge fields to warrant invariance
(0) This generates interactions between gauge fields and elementary particles

Gauge theories

Gauge theories

Example: Quantum electrodynamics (QED, U(1), Abelian)

Starting point: Lagrangian of a free electron

$$
\mathcal{L}_{0}\left(\Psi, \partial_{\mu} \Psi\right)=\bar{\Psi}(i \not \partial-m) \Psi
$$

Gauge theories

Example: Quantum electrodynamics (QED, U(1), Abelian)

Starting point: Lagrangian of a free electron

$$
\mathcal{L}_{0}\left(\Psi, \partial_{\mu} \Psi\right)=\bar{\Psi}(i \not \partial-m) \Psi,
$$

$$
\Psi=\left(\begin{array}{l}
\Psi_{1} \\
\Psi_{2} \\
\Psi_{3} \\
\Psi_{4}
\end{array}\right), \quad \Psi_{\alpha} \text { complex-valued functions }
$$

Gauge theories

Example: Quantum electrodynamics (QED, U(1), Abelian)

Starting point: Lagrangian of a free electron

$$
\begin{gathered}
\mathcal{L}_{0}\left(\Psi, \partial_{\mu} \Psi\right)=\bar{\Psi}(i \not \partial-m) \Psi, \\
\Psi=\left(\begin{array}{l}
\Psi_{1} \\
\Psi_{2} \\
\Psi_{3} \\
\Psi_{4}
\end{array}\right), \quad \Psi_{\alpha} \text { complex-valued functions, } \\
\not \partial=\gamma^{\mu} \partial_{\mu}, \quad \gamma^{0}=\left(\begin{array}{cc}
\mathbb{1} & 0 \\
0 & -\mathbb{1}
\end{array}\right), \quad \vec{\gamma}=\left(\begin{array}{cc}
0 & \vec{\sigma} \\
-\vec{\sigma} & 0
\end{array}\right), \quad \bar{\Psi}=\psi^{\dagger} \gamma^{0} .
\end{gathered}
$$

Gauge theories

Example: Quantum electrodynamics (QED, U(1), Abelian)

Starting point: Lagrangian of a free electron

$$
\mathcal{L}_{0}\left(\Psi, \partial_{\mu} \Psi\right)=\bar{\Psi}(i \not \partial-m) \Psi,
$$

$$
\begin{gathered}
\Psi=\left(\begin{array}{l}
\Psi_{1} \\
\Psi_{2} \\
\Psi_{3} \\
\Psi_{4}
\end{array}\right), \quad \Psi_{\alpha} \text { complex-valued functions, } \\
\not \partial=\gamma^{\mu} \partial_{\mu}, \quad \gamma^{0}=\left(\begin{array}{cc}
\mathbb{1} & 0 \\
0 & -\mathbb{1}
\end{array}\right), \quad \vec{\gamma}=\left(\begin{array}{cc}
0 & \vec{\sigma} \\
-\vec{\sigma} & 0
\end{array}\right), \quad \bar{\Psi}=\psi^{\dagger} \gamma^{0} .
\end{gathered}
$$

Dirac equation

$$
(i \not \partial-m) \Psi=0 .
$$

Gauge theories

Gauge theories

Invariance of \mathcal{L}_{0}

\mathcal{L}_{0} is invariant under global $\mathrm{U}(1)$ transformations:

$$
\begin{aligned}
& \Psi(x) \mapsto \Psi^{\prime}(x)=e^{-i \alpha} \Psi(x) \\
& \bar{\Psi}(x) \mapsto \bar{\Psi}^{\prime}(x)=\bar{\Psi}(x) e^{i \alpha}
\end{aligned}
$$

Gauge theories

Invariance of \mathcal{L}_{0}

\mathcal{L}_{0} is invariant under global $\mathrm{U}(1)$ transformations：

$$
\begin{aligned}
& \Psi(x) \mapsto \Psi^{\prime}(x)=e^{-i \alpha} \Psi(x) \\
& \bar{\Psi}(x) \mapsto \bar{\Psi}^{\prime}(x)=\bar{\Psi}(x) e^{i \alpha}
\end{aligned}
$$

$\alpha \in[0,2 \pi[$ does not depend on x ：

$$
\bar{\Psi} \Psi \mapsto \bar{\Psi} \underbrace{e^{i \alpha} e^{-i \alpha}}_{=1} \Psi=\bar{\psi} \Psi,
$$

$$
\bar{\Psi} \gamma^{\mu} \partial_{\mu} \Psi \mapsto \bar{\Psi} e^{i \alpha} \gamma^{\mu} \partial_{\mu} e^{-i \alpha} \Psi=\bar{\Psi} e^{i \alpha} e^{-i \alpha} \gamma^{\mu} \partial_{\mu} \Psi=\bar{\Psi} \gamma^{\mu} \partial_{\mu} \Psi
$$

Gauge theories

Invariance of \mathcal{L}_{0}

\mathcal{L}_{0} is invariant under global $\mathrm{U}(1)$ transformations:

$$
\begin{aligned}
& \Psi(x) \mapsto \Psi^{\prime}(x)=e^{-i \alpha} \Psi(x) \\
& \bar{\Psi}(x) \mapsto \bar{\Psi}^{\prime}(x)=\bar{\Psi}(x) e^{i \alpha}
\end{aligned}
$$

$\alpha \in[0,2 \pi[$ does not depend on x :

$$
\bar{\Psi} \Psi \mapsto \bar{\Psi} \underbrace{e^{i \alpha} e^{-i \alpha}}_{=1} \Psi=\bar{\psi} \Psi
$$

$$
\bar{\Psi} \gamma^{\mu} \partial_{\mu} \Psi \mapsto \bar{\Psi} e^{i \alpha} \gamma^{\mu} \partial_{\mu} e^{-i \alpha} \Psi=\bar{\Psi} e^{i \alpha} e^{-i \alpha} \gamma^{\mu} \partial_{\mu} \Psi=\bar{\Psi} \gamma^{\mu} \partial_{\mu} \Psi
$$

Remark

All components Ψ_{α} are multiplied by the same phase.

Gauge theories

Gauge theories

Current density

Infinitesimal transformation

$$
\Psi(x) \mapsto \Psi(x)-i \epsilon \Psi(x)
$$

Gauge theories

Current density

Infinitesimal transformation

$$
\Psi(x) \mapsto \Psi(x)-i \epsilon \Psi(x)
$$

Identify conserved current using Gell-Mann-Lévy trick, $\epsilon \rightarrow \epsilon(x)$:

$$
\begin{aligned}
\delta \mathcal{L}_{0} & =-i \partial_{\mu} \epsilon(x) i \bar{\Psi}(x) \gamma^{\mu} \Psi(x)=\partial_{\mu} \epsilon(x) \bar{\Psi}(x) \gamma^{\mu} \Psi(x) \\
\Rightarrow \quad J^{\mu} & =\frac{\partial \delta \mathcal{L}_{0}}{\partial \partial_{\mu} \epsilon}=\bar{\Psi} \gamma^{\mu} \Psi \\
\partial_{\mu} J^{\mu} & =\frac{\partial \delta \mathcal{L}_{0}}{\partial \epsilon}=0 .
\end{aligned}
$$

Gauge theories

Current density

Infinitesimal transformation

$$
\Psi(x) \mapsto \Psi(x)-i \epsilon \Psi(x)
$$

Identify conserved current using Gell-Mann-Lévy trick, $\epsilon \rightarrow \epsilon(x)$:

$$
\begin{aligned}
\delta \mathcal{L}_{0} & =-i \partial_{\mu} \epsilon(x) i \bar{\Psi}(x) \gamma^{\mu} \Psi(x)=\partial_{\mu} \epsilon(x) \bar{\Psi}(x) \gamma^{\mu} \Psi(x) \\
\Rightarrow \quad J^{\mu} & =\frac{\partial \delta \mathcal{L}_{0}}{\partial \partial_{\mu} \epsilon}=\bar{\Psi} \gamma^{\mu} \Psi \\
\partial_{\mu} J^{\mu} & =\frac{\partial \delta \mathcal{L}_{0}}{\partial \epsilon}=0
\end{aligned}
$$

Charge operator (electron number operator)

$$
Q(t)=\int d^{3} \times J^{0}(t, \vec{x})=\int d^{3} \times \Psi^{\dagger}(t, \vec{x}) \Psi(t, \vec{x}), \quad \frac{d Q}{d t}=0
$$

Gauge theories

Gauge theories

Transformation behavior

Convention: electron has negative electric charge ($q_{e}=-1$)

$$
U(1) \ni e^{-i \alpha} \mapsto e^{-i \alpha q_{e}}=e^{i \alpha}
$$

\Rightarrow convention for local transformation

$$
\Psi(x) \mapsto e^{i \alpha(x)} \Psi(x)
$$

Gauge theories

Transformation behavior

Convention: electron has negative electric charge $\left(q_{e}=-1\right)$

$$
\mathrm{U}(1) \ni e^{-i \alpha} \mapsto e^{-i \alpha q_{e}}=e^{i \alpha}
$$

\Rightarrow convention for local transformation

$$
\Psi(x) \mapsto e^{i \alpha(x)} \Psi(x)
$$

Covariant derivative

$$
D_{\mu} \Psi(x) \mapsto\left[D_{\mu} \Psi(x)\right]^{\prime}=D_{\mu}^{\prime} \Psi^{\prime}(x) \stackrel{!}{=} e^{i \alpha(x)} D_{\mu} \Psi(x)
$$

Gauge theories

Transformation behavior

Convention: electron has negative electric charge $\left(q_{e}=-1\right)$

$$
\mathrm{U}(1) \ni e^{-i \alpha} \mapsto e^{-i \alpha q_{e}}=e^{i \alpha}
$$

\Rightarrow convention for local transformation

$$
\Psi(x) \mapsto e^{i \alpha(x)} \Psi(x)
$$

Covariant derivative

$$
D_{\mu} \Psi(x) \mapsto\left[D_{\mu} \Psi(x)\right]^{\prime}=D_{\mu}^{\prime} \Psi^{\prime}(x) \stackrel{!}{=} e^{i \alpha(x)} D_{\mu} \Psi(x)
$$

Introduce
gauge four-vector potential $\mathcal{A}_{\mu}(x)$ with transformation behavior

$$
\mathcal{A}_{\mu}(x) \mapsto \mathcal{A}_{\mu}^{\prime}(x)=\mathcal{A}_{\mu}(x)+\frac{1}{e} \partial_{\mu} \alpha(x), \quad e>0
$$

Gauge theories

Gauge theories

Define covariant derivative

$$
\begin{aligned}
D_{\mu} \Psi(x) & :=\left[\partial_{\mu}-i e \mathcal{A}_{\mu}(x)\right] \Psi(x) \\
\mapsto D_{\mu}^{\prime} \Psi^{\prime}(x) & =\left[\partial_{\mu}-i e \mathcal{A}_{\mu}(x)-i \partial_{\mu} \alpha(x)\right]\left[e^{i \alpha(x)} \Psi(x)\right] \\
& =e^{i \alpha(x)}\left[\partial_{\mu}+i \partial_{\mu} \alpha(x)-i e \mathcal{A}_{\mu}(x)-i \partial_{\mu} \alpha(x)\right] \Psi(x) \\
& =e^{i \alpha(x)}\left[\partial_{\mu}-i e \mathcal{A}_{\mu}(x)\right] \Psi(x) .
\end{aligned}
$$

Gauge theories

Define covariant derivative

$$
\begin{aligned}
D_{\mu} \Psi(x) & :=\left[\partial_{\mu}-i e \mathcal{A}_{\mu}(x)\right] \Psi(x) \\
\mapsto D_{\mu}^{\prime} \Psi^{\prime}(x) & =\left[\partial_{\mu}-i e \mathcal{A}_{\mu}(x)-i \partial_{\mu} \alpha(x)\right]\left[e^{i \alpha(x)} \Psi(x)\right] \\
& =e^{i \alpha(x)}\left[\partial_{\mu}+i \partial_{\mu} \alpha(x)-i e \mathcal{A}_{\mu}(x)-i \partial_{\mu} \alpha(x)\right] \Psi(x) \\
& =e^{i \alpha(x)}\left[\partial_{\mu}-i e \mathcal{A}_{\mu}(x)\right] \Psi(x) .
\end{aligned}
$$

New Lagrangian

$$
\mathcal{L}_{0}\left(\Psi, D_{\mu} \Psi\right)=\bar{\Psi}(i \not D-m) \Psi=\mathcal{L}_{0}\left(\Psi, \partial_{\mu} \Psi\right)+e \bar{\Psi} \gamma^{\mu} \Psi \mathcal{A}_{\mu}
$$

Gauge theories

Define covariant derivative

$$
\begin{aligned}
D_{\mu} \Psi(x) & :=\left[\partial_{\mu}-i e \mathcal{A}_{\mu}(x)\right] \Psi(x) \\
\mapsto D_{\mu}^{\prime} \Psi^{\prime}(x) & =\left[\partial_{\mu}-i e \mathcal{A}_{\mu}(x)-i \partial_{\mu} \alpha(x)\right]\left[e^{i \alpha(x)} \Psi(x)\right] \\
& =e^{i \alpha(x)}\left[\partial_{\mu}+i \partial_{\mu} \alpha(x)-i e \mathcal{A}_{\mu}(x)-i \partial_{\mu} \alpha(x)\right] \Psi(x) \\
& =e^{i \alpha(x)}\left[\partial_{\mu}-i e \mathcal{A}_{\mu}(x)\right] \Psi(x) .
\end{aligned}
$$

New Lagrangian

$$
\mathcal{L}_{0}\left(\Psi, D_{\mu} \Psi\right)=\bar{\Psi}(i \not D-m) \Psi=\mathcal{L}_{0}\left(\Psi, \partial_{\mu} \Psi\right)+e \bar{\Psi} \gamma^{\mu} \Psi \mathcal{A}_{\mu}
$$

Invariant under so-called gauge transformation of the second kind

$$
\begin{aligned}
\Psi(x) & \mapsto e^{i \alpha(x)} \Psi(x) \\
\mathcal{A}_{\mu}(x) & \mapsto \mathcal{A}_{\mu}(x)+\frac{1}{e} \partial_{\mu} \alpha(x)
\end{aligned}
$$

Gauge theories

Lagrangian of quantum electrodynamics (QED)
Interpret \mathcal{A}_{μ} as a dynamical variable.

Gauge theories

Lagrangian of quantum electrodynamics (QED)

Interpret \mathcal{A}_{μ} as a dynamical variable. Define

$$
\mathcal{F}_{\mu \nu}=\partial_{\mu} \mathcal{A}_{\nu}-\partial_{\nu} \mathcal{A}_{\mu}
$$

and introduce in addition a ",kinetic" term for the vector field:

$$
\mathcal{L}_{\mathrm{QED}}=\bar{\psi} i \gamma^{\mu}\left(\partial_{\mu}-i e \mathcal{A}_{\mu}\right) \Psi-m \bar{\psi} \Psi-\frac{1}{4} \mathcal{F}_{\mu \nu} \mathcal{F}^{\mu \nu}
$$

Gauge theories

Lagrangian of quantum electrodynamics (QED)

Interpret \mathcal{A}_{μ} as a dynamical variable. Define

$$
\mathcal{F}_{\mu \nu}=\partial_{\mu} \mathcal{A}_{\nu}-\partial_{\nu} \mathcal{A}_{\mu}
$$

and introduce in addition a "kinetic" term for the vector field:

$$
\mathcal{L}_{\mathrm{QED}}=\bar{\Psi} i \gamma^{\mu}\left(\partial_{\mu}-i e \mathcal{A}_{\mu}\right) \Psi-m \bar{\Psi} \Psi-\frac{1}{4} \mathcal{F}_{\mu \nu} \mathcal{F}^{\mu \nu}
$$

- After quantization, the gauge field is identified with the photon.

Gauge theories

Lagrangian of quantum electrodynamics (QED)

Interpret \mathcal{A}_{μ} as a dynamical variable. Define

$$
\mathcal{F}_{\mu \nu}=\partial_{\mu} \mathcal{A}_{\nu}-\partial_{\nu} \mathcal{A}_{\mu}
$$

and introduce in addition a "kinetic" term for the vector field:

$$
\mathcal{L}_{\mathrm{QED}}=\bar{\Psi} i \gamma^{\mu}\left(\partial_{\mu}-i e \mathcal{A}_{\mu}\right) \Psi-m \bar{\Psi} \Psi-\frac{1}{4} \mathcal{F}_{\mu \nu} \mathcal{F}^{\mu \nu}
$$

- After quantization, the gauge field is identified with the photon.
- Interaction between the matter field and the gauge field

$$
\mathcal{L}_{\mathrm{int}}=-(-e) \bar{\Psi} \gamma^{\mu} \Psi \mathcal{A}_{\mu}=-J_{\mathrm{em}}^{\mu} \mathcal{A}_{\mu}
$$

Gauge theories

Remarks

(1) A mass term

$$
\begin{aligned}
\frac{1}{2} M^{2} \mathcal{A}_{\mu} \mathcal{A}^{\mu} & \mapsto \frac{1}{2} M^{2}\left(\mathcal{A}_{\mu} \mathcal{A}^{\mu}+\frac{2}{e} \partial_{\mu} \alpha \mathcal{A}^{\mu}+\frac{1}{e^{2}} \partial_{\mu} \alpha \partial^{\mu} \alpha\right) \\
& \neq \frac{1}{2} M^{2} \mathcal{A}_{\mu} \mathcal{A}^{\mu}
\end{aligned}
$$

would spoil gauge invariance.
Gauge bosons are massless (no spontaneous symmetry breaking).

Gauge theories

(2) The coupling of the photon to matter fields is given in terms of their transformation behavior under $\mathrm{U}(1)$.

Gauge theories

(2) The coupling of the photon to matter fields is given in terms of their transformation behavior under $\mathrm{U}(1)$.
Consider matter field Ψ_{q} for a particle with charge q

$$
\Psi_{q}(x) \mapsto e^{-i q \alpha} \Psi_{q}(x)
$$

\Rightarrow so-called minimal substitution $\left(\partial_{\mu} \mapsto \partial_{\mu}+i e q \mathcal{A}_{\mu}\right)$

$$
D_{\mu} \Psi_{q}(x)=\left[\partial_{\mu}+i e q \mathcal{A}_{\mu}(x)\right] \Psi_{q}(x)
$$

Gauge theories

(2) The coupling of the photon to matter fields is given in terms of their transformation behavior under $\mathrm{U}(1)$.
Consider matter field Ψ_{q} for a particle with charge q

$$
\Psi_{q}(x) \mapsto e^{-i q \alpha} \Psi_{q}(x)
$$

\Rightarrow so-called minimal substitution $\left(\partial_{\mu} \mapsto \partial_{\mu}+i e q \mathcal{A}_{\mu}\right)$

$$
D_{\mu} \Psi_{q}(x)=\left[\partial_{\mu}+i e q \mathcal{A}_{\mu}(x)\right] \Psi_{q}(x)
$$

- electron: $q=-1$
- proton: $q=+1$
- neutron: $q=0$
- up quark: $q=2 / 3$
- etc.

Gauge theories

(2) The coupling of the photon to matter fields is given in terms of their transformation behavior under $\mathrm{U}(1)$.
Consider matter field Ψ_{q} for a particle with charge q

$$
\Psi_{q}(x) \mapsto e^{-i q \alpha} \Psi_{q}(x)
$$

\Rightarrow so-called minimal substitution $\left(\partial_{\mu} \mapsto \partial_{\mu}+i e q \mathcal{A}_{\mu}\right)$

$$
D_{\mu} \Psi_{q}(x)=\left[\partial_{\mu}+i e q \mathcal{A}_{\mu}(x)\right] \Psi_{q}(x)
$$

- electron: $q=-1$
- proton: $q=+1$
- neutron: $q=0$
- up quark: $q=2 / 3$
- etc.

Why charge is quantized cannot be explained solely from QED.

Gauge theories

(3) The requirement of renormalizability in the traditional sense excludes further gauge-invariant couplings such as the interaction with an anomalous magnetic moment,

$$
-\frac{e \kappa}{4 m} \mathcal{F}_{\mu \nu} \bar{\Psi} \sigma^{\mu \nu} \Psi, \quad \sigma^{\mu \nu}=\frac{i}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right] .
$$

This is not a group-theoretical argument!

Gauge theories

(3) The requirement of renormalizability in the traditional sense excludes further gauge-invariant couplings such as the interaction with an anomalous magnetic moment,

$$
-\frac{e \kappa}{4 m} \mathcal{F}_{\mu \nu} \bar{\Psi} \sigma^{\mu \nu} \Psi, \quad \sigma^{\mu \nu}=\frac{i}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right] .
$$

This is not a group-theoretical argument!
(9) Due to the Abelian nature of $\mathrm{U}(1)$, photons do not have a direct self coupling.

Gauge theories

Non-Abelian case
Consider the Lagrangian

$$
\mathcal{L}_{0}\left(\Phi, \partial_{\mu} \Phi\right), \quad \Phi=\left(\Phi_{1}, \ldots, \Phi_{n}\right)
$$

Gauge theories

Non-Abelian case
Consider the Lagrangian

$$
\mathcal{L}_{0}\left(\Phi, \partial_{\mu} \Phi\right), \quad \Phi=\left(\Phi_{1}, \ldots, \Phi_{n}\right)
$$

- Assume \mathcal{L}_{0} to be invariant under a global transformation of the matter fields Φ.

Gauge theories

Non-Abelian case
Consider the Lagrangian

$$
\mathcal{L}_{0}\left(\Phi, \partial_{\mu} \Phi\right), \quad \Phi=\left(\Phi_{1}, \ldots, \Phi_{n}\right)
$$

- Assume \mathcal{L}_{0} to be invariant under a global transformation of the matter fields Φ.
- Let the corresponding symmetry group G be a compact Lie group with r abstract infinitesimal generators X_{a} and structure constants $C_{a b c}$ of the Lie algebra:

$$
\left[X_{a}, X_{b}\right]=i C_{a b c} X_{c}
$$

Gauge theories

Non-Abelian case

Consider the Lagrangian

$$
\mathcal{L}_{0}\left(\Phi, \partial_{\mu} \Phi\right), \quad \Phi=\left(\Phi_{1}, \ldots, \Phi_{n}\right)
$$

- Assume \mathcal{L}_{0} to be invariant under a global transformation of the matter fields Φ.
- Let the corresponding symmetry group G be a compact Lie group with r abstract infinitesimal generators X_{a} and structure constants $C_{a b c}$ of the Lie algebra:

$$
\left[X_{a}, X_{b}\right]=i C_{a b c} X_{c}
$$

- Recall theorem: every finite-dimensional representation of a compact Lie group is equivalent to a unitary representation and may be decomposed into a direct sum of irred. reps.

Gauge theories

Non-Abelian case

Consider the Lagrangian

$$
\mathcal{L}_{0}\left(\Phi, \partial_{\mu} \Phi\right), \quad \Phi=\left(\Phi_{1}, \ldots, \Phi_{n}\right)
$$

- Assume \mathcal{L}_{0} to be invariant under a global transformation of the matter fields Φ.
- Let the corresponding symmetry group G be a compact Lie group with r abstract infinitesimal generators X_{a} and structure constants $C_{a b c}$ of the Lie algebra:

$$
\left[X_{a}, X_{b}\right]=i C_{a b c} X_{c}
$$

- Recall theorem: every finite-dimensional representation of a compact Lie group is equivalent to a unitary representation and may be decomposed into a direct sum of irred. reps.
- Examples: $\operatorname{SU}(N)$ and $\operatorname{SO}(N)$ with $r=N^{2}-1$ and $r=N(N-1) / 2$, respectively.

Gauge theories

Non-Abelian case

Consider the Lagrangian

$$
\mathcal{L}_{0}\left(\Phi, \partial_{\mu} \Phi\right), \quad \Phi=\left(\Phi_{1}, \ldots, \Phi_{n}\right)
$$

- Assume \mathcal{L}_{0} to be invariant under a global transformation of the matter fields Φ.
- Let the corresponding symmetry group G be a compact Lie group with r abstract infinitesimal generators X_{a} and structure constants $C_{a b c}$ of the Lie algebra:

$$
\left[X_{a}, X_{b}\right]=i C_{a b c} X_{c}
$$

- Recall theorem: every finite-dimensional representation of a compact Lie group is equivalent to a unitary representation and may be decomposed into a direct sum of irred. reps.
- Examples: $\operatorname{SU}(N)$ and $\operatorname{SO}(N)$ with $r=N^{2}-1$ and $r=N(N-1) / 2$, respectively.
- Also: direct products (Standard model)

Gauge theories

Transformation behavior of matter fields

Gauge theories

Transformation behavior of matter fields

- Parametrize group elements $g \in G$ using the real parameters $\Theta=\left(\Theta_{1}, \ldots, \Theta_{r}\right)$

Gauge theories

Transformation behavior of matter fields

- Parametrize group elements $g \in G$ using the real parameters $\Theta=\left(\Theta_{1}, \ldots, \Theta_{r}\right)$
- The fields Φ are expected to transform according to a fully reducible representation (block-diagonal matrices):

$$
\begin{aligned}
& U: g \mapsto U(g)=\exp \left(-i \Theta_{a} T_{a}\right) \\
& \Phi(x) \mapsto \Phi^{\prime}(x)=U(g) \Phi(x)
\end{aligned}
$$

Gauge theories

Transformation behavior of matter fields

- Parametrize group elements $g \in G$ using the real parameters $\Theta=\left(\Theta_{1}, \ldots, \Theta_{r}\right)$
- The fields Φ are expected to transform according to a fully reducible representation (block-diagonal matrices):

$$
\begin{aligned}
& U: g \mapsto U(g)=\exp \left(-i \Theta_{a} T_{a}\right) \\
& \Phi(x) \mapsto \Phi^{\prime}(x)=U(g) \Phi(x)
\end{aligned}
$$

- The $n \times n$ matrices $T_{a}, a=1, \ldots, r$, are Hermitian (U unitary).

Gauge theories

Transformation behavior of matter fields

- Parametrize group elements $g \in G$ using the real parameters $\Theta=\left(\Theta_{1}, \ldots, \Theta_{r}\right)$
- The fields Φ are expected to transform according to a fully reducible representation (block-diagonal matrices):

$$
\begin{aligned}
& U: g \mapsto U(g)=\exp \left(-i \Theta_{a} T_{a}\right) \\
& \Phi(x) \mapsto \Phi^{\prime}(x)=U(g) \Phi(x)
\end{aligned}
$$

- The $n \times n$ matrices $T_{a}, a=1, \ldots, r$, are Hermitian (U unitary).
- Commutation relations: $\left[T_{a}, T_{b}\right]=i C_{a b c} T_{c}$.

Gauge theories

Transformation behavior of matter fields

- Parametrize group elements $g \in G$ using the real parameters $\Theta=\left(\Theta_{1}, \ldots, \Theta_{r}\right)$
- The fields Φ are expected to transform according to a fully reducible representation (block-diagonal matrices):

$$
\begin{aligned}
& U: g \mapsto U(g)=\exp \left(-i \Theta_{a} T_{a}\right) \\
& \Phi(x) \mapsto \Phi^{\prime}(x)=U(g) \Phi(x)
\end{aligned}
$$

- The $n \times n$ matrices $T_{a}, a=1, \ldots, r$, are Hermitian (U unitary).
- Commutation relations: $\left[T_{a}, T_{b}\right]=i C_{a b c} T_{c}$.
- Group elements in the neighborhood of the identity e with corresponding infinitesimal linear transformation:

$$
\begin{aligned}
g & =e-i \epsilon_{a} X_{a}, \\
U(g) & =\left(1-i \epsilon_{a} T_{a}\right): \Phi(x) \mapsto\left(1-i \epsilon_{a} T_{a}\right) \Phi(x)
\end{aligned}
$$

Gauge theories

Gauge principle

Gauge theories

Gauge principle

- Demand invariance of Lagrangian under local transformations, i.e., $g \rightarrow g(x)$.

Gauge theories

Gauge principle

- Demand invariance of Lagrangian under local transformations, i.e., $g \rightarrow g(x)$.
- Local $\epsilon_{a}(x) \Rightarrow$ additional terms in $\delta \mathcal{L}$, because

$$
\partial_{\mu} \delta \Phi(x)=\underbrace{-i \partial_{\mu} \epsilon_{a}(x) T_{a} \Phi(x)}_{\text {"problematic" term }}-i \epsilon_{a}(x) T_{a} \partial_{\mu} \Phi(x)
$$

Gauge theories

Gauge principle

- Demand invariance of Lagrangian under local transformations, i.e., $g \rightarrow g(x)$.
- Local $\epsilon_{a}(x) \Rightarrow$ additional terms in $\delta \mathcal{L}$, because

$$
\partial_{\mu} \delta \Phi(x)=\underbrace{-i \partial_{\mu} \epsilon_{a}(x) T_{a} \Phi(x)}_{\text {"problematic" term }}-i \epsilon_{a}(x) T_{a} \partial_{\mu} \Phi(x)
$$

- Analogy to QED: introduce covariant derivative with the property

$$
D_{\mu} \Phi(x) \mapsto\left[D_{\mu} \Phi(x)\right]^{\prime}=D_{\mu}^{\prime} \Phi^{\prime}(x) \stackrel{!}{=}\left[1-i \epsilon_{a}(x) T_{a}\right] D_{\mu} \Phi(x),
$$

i.e., the covariant derivative of the fields transforms as the fields.

Gauge theories

Gauge theories

Covariant derivative

Ansatz: introduce for each generator X_{a} of the abstract group a gauge field $\mathcal{A}_{\text {a }}$,

$$
D_{\mu} \Phi(x)=\left[\partial_{\mu}+i g T_{a} \mathcal{A}_{a \mu}(x)\right] \Phi(x)
$$

Gauge theories

Covariant derivative

Ansatz: introduce for each generator X_{a} of the abstract group a gauge field $\mathcal{A}_{a \mu}$,

$$
D_{\mu} \Phi(x)=\left[\partial_{\mu}+i g T_{a} \mathcal{A}_{a \mu}(x)\right] \Phi(x)
$$

Transformation behavior of the gauge fields (in detail)

Gauge theories

Covariant derivative

Ansatz：introduce for each generator X_{a} of the abstract group a gauge field $\mathcal{A}_{\text {a }}$ ，

$$
D_{\mu} \Phi(x)=\left[\partial_{\mu}+i g T_{a} \mathcal{A}_{a \mu}(x)\right] \Phi(x)
$$

Transformation behavior of the gauge fields（in detail）

－Define（summation over a from 1 to r implied）

$$
\widetilde{O}=T_{a} O_{a} .
$$

With a suitable choice of the T_{a}, O_{a} may be projected from \widetilde{O} ．For

$$
\kappa \operatorname{Tr}\left(T_{a} T_{b}\right)=\delta_{a b},
$$

we have

$$
O_{a}=\kappa \operatorname{Tr}\left(T_{a} \widetilde{O}\right)
$$

Gauge theories

- Example: Let \widetilde{O} be a Hermitian traceless 2×2 matrix,

$$
\begin{aligned}
\widetilde{O} & =O_{a} \tau_{a} \quad O_{a} \in \mathbb{R} \\
\frac{1}{2} \operatorname{Tr}\left(\tau_{a} \tau_{b}\right) & =\delta_{a b} \\
\Rightarrow \quad O_{a} & =\frac{1}{2} \operatorname{Tr}\left(\tau_{a} \widetilde{O}\right)
\end{aligned}
$$

Gauge theories

- Example: Let \widetilde{O} be a Hermitian traceless 2×2 matrix,

$$
\begin{aligned}
\widetilde{O} & =O_{a} \tau_{a} \quad O_{a} \in \mathbb{R}, \\
\frac{1}{2} \operatorname{Tr}\left(\tau_{a} \tau_{b}\right) & =\delta_{a b}, \\
\Rightarrow \quad O_{a} & =\frac{1}{2} \operatorname{Tr}\left(\tau_{a} \widetilde{O}\right) .
\end{aligned}
$$

- Write covariant derivative of Φ as

$$
D_{\mu} \Phi(x)=\left[\partial_{\mu}+i g \widetilde{\mathcal{A}}_{\mu}(x)\right] \Phi(x) .
$$

Gauge theories

- Example: Let \widetilde{O} be a Hermitian traceless 2×2 matrix,

$$
\begin{aligned}
\widetilde{O} & =O_{a} \tau_{a} \quad O_{a} \in \mathbb{R}, \\
\frac{1}{2} \operatorname{Tr}\left(\tau_{a} \tau_{b}\right) & =\delta_{a b} \\
\Rightarrow \quad O_{a} & =\frac{1}{2} \operatorname{Tr}\left(\tau_{a} \widetilde{O}\right) .
\end{aligned}
$$

- Write covariant derivative of Φ as

$$
D_{\mu} \Phi(x)=\left[\partial_{\mu}+i g \widetilde{\mathcal{A}}_{\mu}(x)\right] \Phi(x)
$$

- Requirement for transformation behavior \Rightarrow

$$
\left(\partial_{\mu}+i g \widetilde{\mathcal{A}}_{\mu}+i g \widetilde{\delta \mathcal{A}}_{\mu}\right)[(1-i \widetilde{\epsilon}) \Phi(x)]=(1-i \widetilde{\epsilon})\left(\partial_{\mu}+i g \widetilde{\mathcal{A}}_{\mu}\right) \Phi(x)
$$

Gauge theories

- Comparison of small terms of linear order:

$$
-i \partial_{\mu} \widetilde{\epsilon}+g \widetilde{\mathcal{A}}_{\mu} \widetilde{\epsilon}+i g \widetilde{\delta \mathcal{A}}_{\mu}=g \widetilde{\epsilon}^{\mathcal{A}_{\mu}}
$$

or

$$
\widetilde{\delta \mathcal{A}}_{\mu}=i\left[\widetilde{\mathcal{A}}_{\mu}, \widetilde{\epsilon}\right]+\frac{1}{g} \partial_{\mu} \widetilde{\epsilon}
$$

Gauge theories

- Comparison of small terms of linear order:

$$
-i \partial_{\mu} \widetilde{\epsilon}+g \widetilde{\mathcal{A}}_{\mu} \widetilde{\epsilon}+i g \widetilde{\delta \mathcal{A}}_{\mu}=g \widetilde{\epsilon}_{\mathcal{A}}^{\mu}
$$

or

$$
\widetilde{\delta \mathcal{A}}_{\mu}=i\left[\widetilde{\mathcal{A}}_{\mu}, \widetilde{\epsilon}\right]+\frac{1}{g} \partial_{\mu} \widetilde{\epsilon}
$$

- Does the transformation behavior of the gauge fields depend on the representation T_{a} used for the matter fields?

Gauge theories

- Comparison of small terms of linear order:

$$
-i \partial_{\mu} \widetilde{\epsilon}+g \widetilde{\mathcal{A}}_{\mu} \widetilde{\epsilon}+i g \widetilde{\delta \mathcal{A}}_{\mu}=g \widetilde{\epsilon}_{\mathcal{A}}^{\mu}
$$

or

$$
\widetilde{\delta \mathcal{A}}_{\mu}=i\left[\widetilde{\mathcal{A}}_{\mu}, \widetilde{\epsilon}\right]+\frac{1}{g} \partial_{\mu} \widetilde{\epsilon}
$$

- Does the transformation behavior of the gauge fields depend on the representation T_{a} used for the matter fields?

No: The transformation behavior is determined in terms of the structure constants $C_{a b c}$:

$$
\delta \mathcal{A}_{a \mu}=C_{b c a} \epsilon_{b} \mathcal{A}_{c \mu}+\frac{1}{g} \partial_{\mu} \epsilon_{a}
$$

Gauge theories

Intermediate result

Gauge theories

Intermediate result

- The Lagrangian

$$
\mathcal{L}_{0}\left(\Phi, D_{\mu} \Phi\right) \text { with } D_{\mu} \Phi=\left(\partial_{\mu}+i g \widetilde{\mathcal{A}}_{\mu}\right) \Phi
$$

is invariant under the (simultaneous) local transformations

$$
\begin{aligned}
& \Phi(x) \mapsto \exp \left[-i \Theta_{a}(x) T_{a}\right] \Phi(x)=\underbrace{\exp [-i \widetilde{\Theta}(x)]}_{=: U[g(x)]} \Phi(x), \\
& \widetilde{\mathcal{A}}_{\mu}(x)=T_{a} \mathcal{A}_{a \mu}(x) \mapsto U \widetilde{\mathcal{A}}_{\mu}(x) U^{\dagger}+\frac{i}{g} \partial_{\mu} U U^{\dagger}
\end{aligned}
$$

Gauge theories

Intermediate result

- The Lagrangian

$$
\mathcal{L}_{0}\left(\Phi, D_{\mu} \Phi\right) \text { with } D_{\mu} \Phi=\left(\partial_{\mu}+i g \widetilde{\mathcal{A}}_{\mu}\right) \Phi
$$

is invariant under the (simultaneous) local transformations

$$
\begin{aligned}
& \Phi(x) \mapsto \exp \left[-i \Theta_{a}(x) T_{a}\right] \Phi(x)=\underbrace{\exp [-i \widetilde{\Theta}(x)]}_{=: U[g(x)]} \Phi(x), \\
& \widetilde{\mathcal{A}}_{\mu}(x)=T_{a} \mathcal{A}_{a \mu}(x) \mapsto U \widetilde{\mathcal{A}}_{\mu}(x) U^{\dagger}+\frac{i}{g} \partial_{\mu} U U^{\dagger}
\end{aligned}
$$

- Gauge principle \Rightarrow interaction of matter fields with gauge fields.

Gauge theories

Intermediate result

- The Lagrangian

$$
\mathcal{L}_{0}\left(\Phi, D_{\mu} \Phi\right) \text { with } D_{\mu} \Phi=\left(\partial_{\mu}+i g \widetilde{\mathcal{A}}_{\mu}\right) \Phi
$$

is invariant under the (simultaneous) local transformations

$$
\begin{aligned}
& \Phi(x) \mapsto \exp \left[-i \Theta_{a}(x) T_{a}\right] \Phi(x)=\underbrace{\exp [-i \widetilde{\Theta}(x)]}_{=: U[g(x)]} \Phi(x), \\
& \widetilde{\mathcal{A}}_{\mu}(x)=T_{a} \mathcal{A}_{a \mu}(x) \mapsto U \widetilde{\mathcal{A}}_{\mu}(x) U^{\dagger}+\frac{i}{g} \partial_{\mu} U U^{\dagger} .
\end{aligned}
$$

- Gauge principle \Rightarrow interaction of matter fields with gauge fields.
- However, so far gauge bosons are no dynamical degrees of freedom.

Gauge theories

- Analogy to QED: add

$$
-\frac{1}{4} \mathcal{F}_{a \mu \nu} \mathcal{F}_{a}^{\mu \nu}
$$

Prerequisite: $\mathcal{F}_{a \mu \nu}$ transforms under the adjoint representation.

Gauge theories

- Analogy to QED: add

$$
-\frac{1}{4} \mathcal{F}_{a \mu \nu} \mathcal{F}_{a}^{\mu \nu}
$$

Prerequisite: $\mathcal{F}_{a \mu \nu}$ transforms under the adjoint representation.

- Matrices of the adjoint representation ($r \times r$ matrices):

$$
\left(T_{a}^{\mathrm{ad}}\right)_{b c}=-i C_{a b c}
$$

Gauge theories

- Analogy to QED: add

$$
-\frac{1}{4} \mathcal{F}_{a \mu \nu} \mathcal{F}_{a}^{\mu \nu}
$$

Prerequisite: $\mathcal{F}_{a \mu \nu}$ transforms under the adjoint representation.

- Matrices of the adjoint representation ($r \times r$ matrices):

$$
\left(T_{a}^{\mathrm{ad}}\right)_{b c}=-i C_{a b c}
$$

The fields $F_{a}, a=1, \ldots, r$, transform under the adjoint representation iff

$$
\begin{gathered}
\left(\begin{array}{c}
F_{1} \\
\vdots \\
F_{r}
\end{array}\right)=: F \mapsto\left(1-i \epsilon_{c} T_{c}^{\mathrm{ad}}\right) F, \\
F_{a} \mapsto F_{a}-i \epsilon_{c}\left(T_{c}^{\mathrm{ad}}\right)_{a b} F_{b}=F_{a}+C_{a b c} \epsilon_{b} F_{c} .
\end{gathered}
$$

Gauge theories

- The naive ansatz

$$
\partial_{\mu} \mathcal{A}_{a \nu}-\partial_{\nu} \mathcal{A}_{a \mu}
$$

does not provide the correct transformation behavior.

Gauge theories

- The naive ansatz

$$
\partial_{\mu} \mathcal{A}_{a \nu}-\partial_{\nu} \mathcal{A}_{a \mu}
$$

does not provide the correct transformation behavior.

- An additional term is required:

$$
\mathcal{F}_{a \mu \nu}:=\partial_{\mu} \mathcal{A}_{a \nu}-\partial_{\nu} \mathcal{A}_{a \mu}-g C_{a b c} \mathcal{A}_{b \mu} \mathcal{A}_{c \nu}
$$

Gauge theories

- The naive ansatz

$$
\partial_{\mu} \mathcal{A}_{a \nu}-\partial_{\nu} \mathcal{A}_{a \mu}
$$

does not provide the correct transformation behavior.

- An additional term is required:

$$
\mathcal{F}_{a \mu \nu}:=\partial_{\mu} \mathcal{A}_{a \nu}-\partial_{\nu} \mathcal{A}_{a \mu}-g C_{a b c} \mathcal{A}_{b \mu} \mathcal{A}_{c \nu}
$$

Lagrangian of a gauge theory (Yang-Mills theory)

$$
\mathcal{L}=\mathcal{L}_{0}\left(\Phi, D_{\mu} \Phi\right)-\frac{1}{4} \mathcal{F}_{a \mu \nu} \mathcal{F}_{a}^{\mu \nu}
$$

Gauge theories

- The naive ansatz

$$
\partial_{\mu} \mathcal{A}_{a \nu}-\partial_{\nu} \mathcal{A}_{a \mu}
$$

does not provide the correct transformation behavior.

- An additional term is required:

$$
\mathcal{F}_{a \mu \nu}:=\partial_{\mu} \mathcal{A}_{a \nu}-\partial_{\nu} \mathcal{A}_{a \mu}-g C_{a b c} \mathcal{A}_{b \mu} \mathcal{A}_{c \nu}
$$

Lagrangian of a gauge theory (Yang-Mills theory)

$$
\mathcal{L}=\mathcal{L}_{0}\left(\Phi, D_{\mu} \Phi\right)-\frac{1}{4} \mathcal{F}_{a \mu \nu} \mathcal{F}_{a}^{\mu \nu}
$$

Remarks

Gauge theories

- The naive ansatz

$$
\partial_{\mu} \mathcal{A}_{a \nu}-\partial_{\nu} \mathcal{A}_{a \mu}
$$

does not provide the correct transformation behavior.

- An additional term is required:

$$
\mathcal{F}_{a \mu \nu}:=\partial_{\mu} \mathcal{A}_{a \nu}-\partial_{\nu} \mathcal{A}_{a \mu}-g C_{a b c} \mathcal{A}_{b \mu} \mathcal{A}_{c \nu}
$$

Lagrangian of a gauge theory (Yang-Mills theory)

$$
\mathcal{L}=\mathcal{L}_{0}\left(\Phi, D_{\mu} \Phi\right)-\frac{1}{4} \mathcal{F}_{a \mu \nu} \mathcal{F}_{a}^{\mu \nu}
$$

Remarks

- Mass terms $\frac{1}{2} M_{a}^{2} \mathcal{A}_{a \mu} \mathcal{A}_{a}^{\mu}$ violate gauge invariance gauge principle \Rightarrow gauge bosons are massless (without spontaneous symmetry breaking)

Gauge theories

Gauge theories

Remarks cont'd

- Non-Abelian group \Rightarrow interaction terms with three and four gauge fields

Gauge theories

Remarks cont'd

- Non-Abelian group \Rightarrow interaction terms with three and four gauge fields

Gauge theories

Remarks cont'd

- Non-Abelian group \Rightarrow interaction terms with three and four gauge fields

- G direct product, $G=G_{1} \times \cdots \times G_{k} \Rightarrow$ introduce for each subgroup G_{i} an independent coupling constant g_{i}

Gauge theories

Remarks cont'd

- Non-Abelian group \Rightarrow interaction terms with three and four gauge fields

- G direct product, $G=G_{1} \times \cdots \times G_{k} \Rightarrow$ introduce for each subgroup G_{i} an independent coupling constant g_{i}
- Example: gauge group of the Standard Model

$$
\underbrace{S U(3)_{C}}_{\text {strong int. }} \times \underbrace{S U(2)_{L} \times U(1)_{Y}}_{\text {electroweak int. }}
$$

Gauge theories

Remarks cont＇d

－Non－Abelian group \Rightarrow interaction terms with three and four gauge fields

－G direct product，$G=G_{1} \times \cdots \times G_{k} \Rightarrow$ introduce for each subgroup G_{i} an independent coupling constant g_{i}
－Example：gauge group of the Standard Model

$$
\underbrace{S U(3)_{C}}_{\text {strong int. }} \times \underbrace{S U(2)_{L} \times U(1)_{Y}}_{\text {electroweak int. }}
$$

$\Rightarrow 3$ gauge couplings

$$
g_{3} \leftrightarrow \mathrm{SU}(3)_{c}, \quad g \leftrightarrow \mathrm{SU}(2)_{L}, \quad g^{\prime} \leftrightarrow \mathrm{U}(1)_{Y}
$$

