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Gauge theories

Gauge principle

© Mathematical description of elementary particles in terms of
so-called matter fields: W(x), x = (t, X)
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Gauge theories

Gauge principle

© Mathematical description of elementary particles in terms of
so-called matter fields: W(x), x = (t, X)

@ Define action of group G on set M of fields:
V(x) = V(x) = Ag, V(x))
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Gauge theories

Gauge principle

© Mathematical description of elementary particles in terms of
so-called matter fields: W(x), x = (t, X)

@ Define action of group G on set M of fields:
V(x) = V(x) = Ag, V(x))

© Construct (free) theory which is invariant under the action of
all group elements (symmetry)
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Gauge theories

Gauge principle

© Mathematical description of elementary particles in terms of
so-called matter fields: W(x), x = (t, X)

@ Define action of group G on set M of fields:
V(x) = V(x) = Ag, V(x))

© Construct (free) theory which is invariant under the action of
all group elements (symmetry)

@ Require invariance under local transformations:

V(x) = Alg(x), V(x))
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Gauge theories

Gauge principle

© Mathematical description of elementary particles in terms of
so-called matter fields: W(x), x = (t, X)

@ Define action of group G on set M of fields:
V(x) = V(x) = Ag, V(x))
© Construct (free) theory which is invariant under the action of
all group elements (symmetry)
@ Require invariance under local transformations:
V(x) — A(g(x), V(x))

© Introduce additional so-called gauge fields to warrant
invariance
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Gauge theories

Gauge principle

© Mathematical description of elementary particles in terms of
so-called matter fields: W(x), x = (t, X)

@ Define action of group G on set M of fields:
V(x) = V(x) = Ag, V(x))

© Construct (free) theory which is invariant under the action of
all group elements (symmetry)

@ Require invariance under local transformations:
V(x) — A(g(x), V(x))

© Introduce additional so-called gauge fields to warrant

invariance
@ This generates interactions between gauge fields and I
. U
elementary particles e
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Gauge theories

Example: Quantum electrodynamics (QED, U(1), Abelian)

Starting point: Lagrangian of a free electron

Lo(V,0,V) = V(i — m)V,
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Gauge theories

Example: Quantum electrodynamics (QED, U(1), Abelian)

Starting point: Lagrangian of a free electron

Lo(V,0,V) = V(i — m)V,

v, | WV, complex-valued functions,
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Gauge theories

Example: Quantum electrodynamics (QED, U(1), Abelian)

Starting point: Lagrangian of a free electron

Lo(V,0,V) = V(i — m)V,

V= K WV, complex-valued functions,
3
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Gauge theories

Example: Quantum electrodynamics (QED, U(1), Abelian)

Starting point: Lagrangian of a free electron
Lo(V,0,V) = V(i — m)V,
vy
v, -
V= K WV, complex-valued functions,
3
Uy
1 0 0 ¢ -
— K 0 — ~ — — T 0
§=4"0u, v (0 _ﬂ>, g <_5 0>, v =uT’
Dirac equation
(Ia — m)\ll =0. {BERG
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Gauge theories

Invariance of Ly

Ly is invariant under global U(1) transformations:

V(x) = V' (x) = e *WY(x),
WU(x) = V'(x) = U(x)e.
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Gauge theories

Invariance of Ly

Ly is invariant under global U(1) transformations:

V(x) = V' (x) = e *WY(x),
WU(x) = V'(x) = U(x)e.

a € [0,27[ does not depend on x:

VY — Velte @y = yy,
1
\Tl’y“@u\ll — \Tfe’.o"y“ﬁﬂe—’.a\lf = \Tfeio‘e_io"y“au\ll = \Tw“auw.
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Gauge theories

Invariance of Ly

Ly is invariant under global U(1) transformations:

V(x) = V' (x) = e *WY(x),
WU(x) = V'(x) = U(x)e.

a € [0,27[ does not depend on x:

VY — Velte @y = yy,
1
\Tl’y“@u\ll — \Tfe’.o"y“ﬁﬂe—’.a\lf = \Tfeio‘e_io"y“au\ll = \Tw“auw.

All components W, are multiplied by the same phase.

<immes w < EtNBERG
UNIVERSITAT Mainz

Stefan Scherer Symmetries in Physics, WiSe 2018/2019




Gauge theories

G

U

orannes GUTENBERG
UNIVERSITAT A2

Stefan Scherer Symmetries in Physics, WiSe 2018/2019



Gauge theories

Current density

Infinitesimal transformation

V(x) — V(x) — ieV(x).
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Gauge theories

Current density
Infinitesimal transformation

V(x) — V(x) — ieV(x).
Identify conserved current using Gell-Mann-Lévy trick, € — €(x):

6Lo = —i0ue(x)iV(x)y"W(x) = pe(x)W(x)y*W(x)

25Lo -
B = Py
P =58 = VY
5L
H = =
Bt ==L —0.
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Gauge theories

Current density
Infinitesimal transformation

V(x) — V(x) — ieV(x).
Identify conserved current using Gell-Mann-Lévy trick, € — €(x):

6Lo = —i0ue(x)iV(x)y"W(x) = pe(x)W(x)y*W(x)

00Lg =
m= 020 _ Gy
J 00,.€ T
00Lg
B — =
B = =2 =0,

Charge operator (electron number operator)

Q(f)=/C’3xJ°(t,x*)=/d3xWT(t,%)w(t,z), Q _
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Gauge theories

Transformation behavior

Convention: electron has negative electric charge (ge = —1)

U(1) 3 e /@ s e71@9e = i@

= convention for local transformation

V(x) = eMu(x).
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Gauge theories
Transformation behavior

Convention: electron has negative electric charge (ge = —1)

Uu(l) > eI 1y g% — gl
= convention for local transformation
W(x) — e “Xy(x).

Covariant derivative

DLV(x) = [DW(x)] = DLW/ (x) = ™D, W(x).
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Gauge theories
Transformation behavior

Convention: electron has negative electric charge (ge = —1)

Uu(l) > eI 1y g% — gl
= convention for local transformation
W(x) — e “Xy(x).

Covariant derivative

DLV(x) = [DW(x)] = DLW/ (x) = ™D, W(x).

Introduce

gauge four-vector potential A4, (x) with transformation behavior

1
‘AN(X) — AL(X) = AN(X) —+ gaﬂ()é(X), e > 0. (BERG
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Gauge theories

DV (x) = [0, — ieA(x)]W(x)
= DLV (x) = [0 — ieAu(x) = idua(x)] [CIW(x)]
— M9, + D, (x) — ieAu(x) — iBua(x)|V(x)
e[, — ieA,(x)]V(x).

JGlu

JOHA! GUTENBERG
UN\\/ERS\TAT

Stefan Scherer Symmetries in Physics, WiSe 2018/2019



Gauge theories

Define covariant derivative
DV(x) = 3, — ieA,()]V(x)
= DLW (x) = [0, — ieAu(x) — idua(x)] [e"a(x)w(x)}
S [On + i0,0(x) — ieA,(x) — i0u0(x)]W(x)
= ™[, — ieA,(x)]W(x).

New Lagrangian

Lo(V,D,V) = V(i) — m)W = Lo(V,0,V) + eWry' WA,
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Gauge theories
Define covariant derivative

DuV(x) = [0, — ieAu(x)]W(x)
= DL (x) = [0 — ieAu(x) — iBua()] [ U(x)]
= el [On + i0pa(x) — ieAu(x) — iOuo(x)]W(x)
= M9, — ieA,(x)]W(x).

New Lagrangian
Lo(V,D,V) = V(i) — m)W = Lo(V,0,V) + eWry' WA,
Invariant under so-called gauge transformation of the second kind

W(x) — e*My(x),

Au) > A3) + L Byax).
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Gauge theories

Lagrangian of quantum electrodynamics (QED)

Interpret A, as a dynamical variable.
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Gauge theories

Lagrangian of quantum electrodynamics (QED)

Interpret A, as a dynamical variable. Define
Py = Bl — Ol
and introduce in addition a , kinetic" term for the vector field:

Lqep = Viy" (0, — ieA,)V — mUV — 7]-“#1/_7:W
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Gauge theories

Lagrangian of quantum electrodynamics (QED)

Interpret A, as a dynamical variable. Define
Py = Bl — Ol
and introduce in addition a , kinetic" term for the vector field:

U — 1
Lqep = Vi (0, — ieA, )V — mUV — nyu}'“”.

o After quantization, the gauge field is identified with the
photon.
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Gauge theories

Lagrangian of quantum electrodynamics (QED)

Interpret A, as a dynamical variable. Define

Py = Bl — Ol

and introduce in addition a , kinetic” term for the vector field:

U — 1
Lqep = Vi (0, — ieA, )V — mUV — nyu}'“”.

o After quantization, the gauge field is identified with the
photon.

@ Interaction between the matter field and the gauge field

Lint = —(—e)Uy*WA, = —J- A,
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Gauge theories

@ A mass term

1 1 2 1
EMzAM.A“ > §M2(AMA“ I 28“04.4“ I gaua(?“a)
1
+ 5/\42,4“,4“
would spoil gauge invariance.

Gauge bosons are massless (no spontaneous symmetry
breaking).
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Gauge theories

@ The coupling of the photon to matter fields is given in terms
of their transformation behavior under U(1).
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Gauge theories

@ The coupling of the photon to matter fields is given in terms
of their transformation behavior under U(1).
Consider matter field W, for a particle with charge g

Wo(x) = e 9 Wg(x),
= so-called minimal substitution (0, — 0, + ieq.A,)

DLWy (x) = [0, + ieq A (x)]Wq(x).

\BERG
[TAT MAIN2

Stefan Scherer Symmetries in Physics, WiSe 2018/2019




Gauge theories

@ The coupling of the photon to matter fields is given in terms
of their transformation behavior under U(1).
Consider matter field W, for a particle with charge g

Wo(x) = e 9 Wg(x),
= so-called minimal substitution (0, — 0, + ieq.A,)

DLWy (x) = [0, + ieq A (x)]Wq(x).

o electron: g = —1
e proton: g = +1

e neutron: g =0

e up quark: g =2/3
e etc.
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Gauge theories

@ The coupling of the photon to matter fields is given in terms

of their transformation behavior under U(1).

Consider matter field W, for a particle with charge g

= so-called minimal substitution (0, — 0, + ieq.A,)

Why charge is quantized cannot be explained solely from

W(x) = e Wq(x),

DLWy (x) = [0, + ieq A (x)]Wq(x).

electron: g = —1
proton: g = +1
neutron: g =0

up quark: g =2/3
etc.

Stefan Scherer Symmetries in Physics, WiSe 2018/2019
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Gauge theories

© The requirement of renormalizability in the traditional sense
excludes further gauge-invariant couplings such as the
interaction with an anomalous magnetic moment,

*%fuquaﬂywy ot = é[,yu?,yv:l‘

This is not a group-theoretical argument!
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Gauge theories

© The requirement of renormalizability in the traditional sense
excludes further gauge-invariant couplings such as the
interaction with an anomalous magnetic moment,

*%fuquaﬂywy ot = é[,yu?,yv:l‘

This is not a group-theoretical argument!

© Due to the Abelian nature of U(1), photons do not have a
direct self coupling.
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Gauge theories

Non-Abelian case

Consider the Lagrangian

Lo(P,0,P), &= (P1,...,,).
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Gauge theories

Non-Abelian case

Consider the Lagrangian

Lo(P,0,P), &= (P1,...,,).

@ Assume Ly to be invariant under a global transformation of
the matter fields .
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Gauge theories

Non-Abelian case

Consider the Lagrangian

Lo(P,0,P), &= (P1,...,,).

@ Assume Ly to be invariant under a global transformation of
the matter fields .

@ Let the corresponding symmetry group G be a compact Lie
group with r abstract infinitesimal generators X, and
structure constants C,p of the Lie algebra:

[Xa7 Xb] = iCapcXc
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Gauge theories

Non-Abelian case

Consider the Lagrangian
Lo(P,0,P), &= (P1,...,,).

@ Assume Ly to be invariant under a global transformation of
the matter fields .

@ Let the corresponding symmetry group G be a compact Lie

group with r abstract infinitesimal generators X, and
structure constants C,p of the Lie algebra:

[Xa7 Xb] = iCapcXc

@ Recall theorem: every finite-dimensional representation of a
compact Lie group is equivalent to a unitary representation
and may be decomposed into a direct sum of irred. reps.
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Gauge theories

Non-Abelian case

Consider the Lagrangian

Lo(®,0,0), &= (d1,...,D,).

@ Assume Ly to be invariant under a global transformation of
the matter fields .

@ Let the corresponding symmetry group G be a compact Lie
group with r abstract infinitesimal generators X, and
structure constants C,p of the Lie algebra:

[Xa7 Xb] = iCapcXc

@ Recall theorem: every finite-dimensional representation of a
compact Lie group is equivalent to a unitary representation
and may be decomposed into a direct sum of irred. reps.

o Examples: SU(N) and SO(N) with r = N? — 1 and
r= N(N —1)/2, respectively.
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Gauge theories

Non-Abelian case

Consider the Lagrangian

Lo(®,0,0), &= (d1,...,D,).

@ Assume Ly to be invariant under a global transformation of
the matter fields .

@ Let the corresponding symmetry group G be a compact Lie
group with r abstract infinitesimal generators X, and
structure constants C,p of the Lie algebra:

[Xa7 Xb] = iCapcXc

@ Recall theorem: every finite-dimensional representation of a
compact Lie group is equivalent to a unitary representation
and may be decomposed into a direct sum of irred. reps.

o Examples: SU(N) and SO(N) with r = N? — 1 and
r= N(N —1)/2, respectively.

\BERG
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Gauge theories
Transformation behavior of matter fields
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Gauge theories

Transformation behavior of matter fields

@ Parametrize group elements g € G using the real parameters

e:(ela"'aer)
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Gauge theories

Transformation behavior of matter fields

@ Parametrize group elements g € G using the real parameters
©=(01,...,0,)
@ The fields ® are expected to transform according to a fully
reducible representation (block-diagonal matrices):
U:g— U(g) =exp(—i©,T,),
d(x) = d'(x) = U(g)d(x).
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Gauge theories

Transformation behavior of matter fields

@ Parametrize group elements g € G using the real parameters
©=(01,...,0,)
@ The fields ® are expected to transform according to a fully
reducible representation (block-diagonal matrices):
U:g— U(g) =exp(—i©,T,),
d(x) = d'(x) = U(g)d(x).

@ The n x n matrices T,, a=1,...,r, are Hermitian
(U unitary).
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Gauge theories

Transformation behavior of matter fields

@ Parametrize group elements g € G using the real parameters
©=(01,...,0,)
@ The fields ® are expected to transform according to a fully
reducible representation (block-diagonal matrices):
U:g— U(g) =exp(—i©,T,),
d(x) = d'(x) = U(g)d(x).

@ The n x n matrices T,, a=1,...,r, are Hermitian
(U unitary).

e Commutation relations: [T,, Tp] = iCape Te.
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Gauge theories

Transformation behavior of matter fields

@ Parametrize group elements g € G using the real parameters

©=(01,...,0,)
@ The fields ® are expected to transform according to a fully
reducible representation (block-diagonal matrices):

U:g+— U(g) =exp(—i©,T,),
D(x) = d'(x) = U(g)P(x).
@ The n x n matrices T,, a=1,...,r, are Hermitian
(U unitary).
e Commutation relations: [T,, Tp] = iCape Te.
@ Group elements in the neighborhood of the identity e with
corresponding infinitesimal linear transformation:
g =e—ie;X,,
U(g) = (1 —ieaTy) : (x) — (1 —iea To)P(x) AT




Gauge theories

Gauge principle
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Gauge theories

Gauge principle

@ Demand invariance of Lagrangian under local transformations,
ie, g — g(x).
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Gauge theories

Gauge principle

@ Demand invariance of Lagrangian under local transformations,
ie, g — g(x).
@ Local €,(x) = additional terms in 0L, because

0, 0P(x) = —idyea(x) TaCD(XZ —i€a(x) T30, P(x)

"problematic” term
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Gauge theories

Gauge principle

@ Demand invariance of Lagrangian under local transformations,
ie, g — g(x).
@ Local €,(x) = additional terms in 0L, because

0, 0P(x) = —idyea(x) TaCD(XZ —i€a(x) T30, P(x)

"problematic” term

@ Analogy to QED: introduce covariant derivative with the
property

D,®(x) — [D,®(x)] = DLCDI(X) = [1 —iea(x) Ta] D, P(x),

i.e., the covariant derivative of the fields transforms as the I
fields. c
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Gauge theories

Covariant derivative

Ansatz: introduce for each generator X, of the abstract group a
gauge field A,

DMCD(X) = [aﬂ + igTaAa,u(X)] ®(x).

JGlu

orannes GUTENBERG
UNIVERSITAT A2

Stefan Scherer Symmetries in Physics, WiSe 2018/2019



Gauge theories

Ansatz: introduce for each generator X, of the abstract group a
gauge field A,

Duq)(X) = [aﬂ + igTaAau(X)] ®(x).

Transformation behavior of the gauge fields (in detail)
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Gauge theories

Covariant derivative

Ansatz: introduce for each generator X, of the abstract group a
gauge field A,

Duq)(X) = [aﬂ + igTaAau(X)] ®(x).

Transformation behavior of the gauge fields (in detail)

@ Define (summation over a from 1 to r implied)

0= T,0,.
With a suitable choice of the T,, O, may be projected from
0. For
I@’TI’( Ta Tb) = (531),
we have

0, = kTr(T,0). {BERG
Stefan Scherer Symmetries in Physics, WiSe 2018/2019




Gauge theories

@ Example: Let O be a Hermitian traceless 2 x 2 matrix,
5 = OaTa Oa € R,

1
§Tr(Ta7'b) = 0ab,

= 0,= %TI’(TQO).
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Gauge theories

@ Example: Let O be a Hermitian traceless 2 x 2 matrix,
5 = OaTa Oa € R,
1
§Tr(Ta7'b) = ab,

1
= Oa = ETI’(TQO).
@ Write covariant derivative of ¢ as

D,®(x) = [0, + ig,Z”(x)]d>(x).
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Gauge theories

@ Example: Let O be a Hermitian traceless 2 x 2 matrix,
5 = OaTa Oa € R,

1
§Tr(Ta7'b) = 0ab,

= 0,= %TI’(TQO).
@ Write covariant derivative of ® as
D0 (x) = [0 + ig A, ()] ().
@ Requirement for transformation behavior =

(O + ig- A+ igdA,)[(L — i)P(x)] = (1— 78)(D, + igAu)O(x) | g

sorannes GUTENBERG
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Gauge theories

@ Comparison of small terms of linear order:
=10 = gﬂug—i— igg,vélu = g?ju

or
—~ ~ 1
S A, = i[A,, €] + Eaua

2
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Gauge theories

@ Comparison of small terms of linear order:
=10 = gﬂug—i— igg,vélu = g?ju

or
~ ~ 1
S A, = i[A,, €] + Eaua

@ Does the transformation behavior of the gauge fields depend
on the representation T, used for the matter fields?

2
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Gauge theories

@ Comparison of small terms of linear order:
=10 = gﬂug—i— igg,vélu = g?ju
or "
S A, = i[A,, €] + Eaua

@ Does the transformation behavior of the gauge fields depend
on the representation T, used for the matter fields?

No: The transformation behavior is determined in terms of the
structure constants C,p,:

1
0As4 = CheatpAcy - gauea-

2
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Gauge theories

Intermediate result
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Gauge theories

Intermediate result

@ The Lagrangian

Lo(®, D,®) with D,® = (8, + igA,)d
is invariant under the (simultaneous) local transformations
(x) 1 exp [~i04(x) To] &(x) = exp | ~1B(x)] O(x),

~—_————
= Ulg(x)
A (x) = Tadap(x) = UA,(x)UT + é&MUUT.
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Gauge theories

Intermediate result

@ The Lagrangian

Lo(®, D,®) with D, = (3, + igA,)d
is invariant under the (simultaneous) local transformations
®(x) > exp [—i4(x) To] ®(x) = exp [—ié(x)} o(x),
—_———
=: Ulg(x)]

A (x) = Tadap(x) = UA,(x)UT + é&MUUT.

@ Gauge principle = interaction of matter fields with gauge
fields.
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Gauge theories

Intermediate result

@ The Lagrangian
Lo(®, D,®) with D,® = (9, + ig.A,)®
is invariant under the (simultaneous) local transformations
®(x) > exp [—i4(x) To] ®(x) = exp [—ié(x)} o(x),
=: Ulg(x)]

A (x) = Tadap(x) = UA,(x)UT + é&MUUT.

@ Gauge principle = interaction of matter fields with gauge

fields.
@ However, so far gauge bosons are no dynamical degrees of
\BERG
freedom. JBERG
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Gauge theories

@ Analogy to QED: add

1
_Z‘FB}LV’FQLV'

Prerequisite: F,,,, transforms under the adjoint representation.
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Gauge theories

@ Analogy to QED: add

1
_Z‘FB}LV’FQLV'
Prerequisite: F,,,, transforms under the adjoint representation.

@ Matrices of the adjoint representation (r X r matrices):

(Tad)bc = _iCabc-

a
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Gauge theories

@ Analogy to QED: add

1
_Z‘FB}LV’FQLV'
Prerequisite: F,,,, transforms under the adjoint representation.

@ Matrices of the adjoint representation (r X r matrices):

(Tad)bc = _iCabc-

a

The fields F,, a=1,...,r, transform under the adjoint
representation iff

F1
L = Fe (1 - e TAYF,

\BERG

. ad
Fa — Fa = I€C(TC )abe = Fa =+ Cabcech- ITAT




Gauge theories

@ The naive ansatz

au,Aau - 61/~Aap,

does not provide the correct transformation behavior.
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Gauge theories

@ The naive ansatz

8#./4311 - 61/./43#,

does not provide the correct transformation behavior.

@ An additional term is required:

Jra;w = a,uAau - 8V~Aau - gCabcAbp,Acu'
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Gauge theories

@ The naive ansatz

8#./4311 - 61/./43#,

does not provide the correct transformation behavior.

@ An additional term is required:

Jra;w = a,uAau - 8V~Aau - gCabcAprcu'

Lagrangian of a gauge theory (Yang-Mills theory)

1
L= Lo(®,D,P) — Z.Faw]:ﬁ"
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Gauge theories

@ The naive ansatz

8#./4311 - 61/./43/_1,

does not provide the correct transformation behavior.

@ An additional term is required:

Jrauu = a,uAau - 8V~Aau - gCabcAbp,Acu'

Lagrangian of a gauge theory (Yang-Mills theory)

1
L= Lo(®,D,P) — Z.Faw]:ﬁ"
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Gauge theories

@ The naive ansatz

8#./4311 - 81/./43“

does not provide the correct transformation behavior.

@ An additional term is required:

Jrauu = a,uAau - 8uAau - gCabcAbp,Acu'

Lagrangian of a gauge theory (Yang-Mills theory)

1
L= Lo(®,D,P) — Z.Faw]:ﬁ"

@ Mass terms %MﬁAaM.A’; violate gauge invariance

gauge principle = gauge bosons are massless (without

\BERG

spontaneous symmetry breaking) S5 S
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Gauge theories
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Gauge theories

Remarks cont'd

@ Non-Abelian group = interaction terms with three and four
gauge fields
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Gauge theories

Remarks cont'd

@ Non-Abelian group = interaction terms with three and four
gauge fields

@ G direct product, G = G; X --- X G, = introduce for each
subgroup G; an independent coupling constant g;
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Gauge theories

Remarks cont'd

@ Non-Abelian group = interaction terms with three and four
gauge fields

@ G direct product, G = G; X --- X G, = introduce for each
subgroup G; an independent coupling constant g;

@ Example: gauge group of the Standard Model

SU(3), xSU(2), x U(1)y
~——

strong int.  electroweak int.
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Gauge theories

Remarks cont'd

@ Non-Abelian group = interaction terms with three and four
gauge fields

@ G direct product, G = G; X --- X G, = introduce for each
subgroup G; an independent coupling constant g;

@ Example: gauge group of the Standard Model

SU(3), xSU(2), x U(1)y
~——

strong int.  electroweak int.
= 3 gauge couplings

g3 < SU(3)., g+ SU2),, g < U@),

Stefan Scherer Symmetries in Physics, WiSe 2018/2019

BERG
ITAT Az



