Aim: Classification of composite states

Atoms: Atomic nucleus and electron shell

Aim: Classification of composite states

- Atoms: Atomic nucleus and electron shell
- Q Nuclei: Protons and neutrons (Collective term: Nucleons ⊂ baryons ⊂ hadrons)

Aim: Classification of composite states

- Atoms: Atomic nucleus and electron shell
- Q Nuclei: Protons and neutrons (Collective term: Nucleons ⊂ baryons ⊂ hadrons)
- O Nucleons: Quarks (M. Gell-Mann, Phys. Lett. 8, 214 (1964))

Aim: Classification of composite states

- Atoms: Atomic nucleus and electron shell
- Q Nuclei: Protons and neutrons (Collective term: Nucleons ⊂ baryons ⊂ hadrons)
- **3** Nucleons: Quarks (M. Gell-Mann, Phys. Lett. **8**, 214 (1964))

A simpler and more elegant scheme can be constructed if we allow non-integral values for the charges. We can dispense entirely with the basic baryon b if we assign to the triplet t the following properties: spin $\frac{1}{2}$, $z = -\frac{1}{3}$, and baryon number $\frac{1}{3}$. We then refer to the members u^3 , $d^{-\frac{1}{3}}$, and $s^{-\frac{1}{3}}$ of the triplet as "quarks" 6) q and the members of the anti-triplet as anti-quarks \overline{q} . Baryons can now be constructed from quarks by using the combinations (qqq), (qqqq \overline{q}), etc., while mesons are made out of (q \overline{q}), (qq $\overline{q}\overline{q}$), etc. It is assuming that the lowest baryon configuration (qqq) gives just the representations 1, 8, and 10 that have been observed, while the lowest meson configuration (q \overline{q}) similarly gives just 1 and 8.

6) James Joyce, Finnegan's Wake: "three quarks for Muster Mark"

IBERG

Physical motivation

Stefan Scherer Symmetries in Physics: Introduction and Overview

Physical motivation

Physical motivation

- Evidence for substructure of hadrons
 - Extension (form factors, e.g., root-mean-square charge radius of the proton $r_F^p = (0.8751 \pm 0.0061)$ fm)

Physical motivation

- Extension (form factors, e.g., root-mean-square charge radius of the proton $r_F^p = (0.8751 \pm 0.0061)$ fm)
- Excitation spectrum

- Extension (form factors, e.g., root-mean-square charge radius of the proton $r_F^p = (0.8751 \pm 0.0061)$ fm)
- Excitation spectrum
- Deep inelastic scattering (pointlike partons)

- Extension (form factors, e.g., root-mean-square charge radius of the proton $r_F^p = (0.8751 \pm 0.0061)$ fm)
- Excitation spectrum
- Deep inelastic scattering (pointlike partons)
- Interpretation: Hadrons are (complicated) bound states of fundamental degrees of freedom

- Extension (form factors, e.g., root-mean-square charge radius of the proton $r_F^p = (0.8751 \pm 0.0061)$ fm)
- Excitation spectrum
- Deep inelastic scattering (pointlike partons)
- Interpretation: Hadrons are (complicated) bound states of fundamental degrees of freedom
- Fundamental Theory: Quantum chromodynamics (QCD) QCD is a non-Abelian gauge theory with gauge group G = SU(3)_c (c for color)

- Extension (form factors, e.g., root-mean-square charge radius of the proton $r_F^p = (0.8751 \pm 0.0061)$ fm)
- Excitation spectrum
- Deep inelastic scattering (pointlike partons)
- Interpretation: Hadrons are (complicated) bound states of fundamental degrees of freedom
- Fundamental Theory: Quantum chromodynamics (QCD) QCD is a non-Abelian gauge theory with gauge group G = SU(3)_c (c for color)
- Matter fields of QCD (quarks) are fermions with spin 1/2, which show up in six different *flavors*

Light quarks

flavor	и	d	S	
mass [MeV]	$2.2^{+0.6}_{-0.4}$	$4.7^{+0.5}_{-0.4}$	96 ⁺⁸	
charge [<i>e</i> > 0]	$\frac{2}{3}$	$-\frac{1}{3}$	$-\frac{1}{3}$	
<i>I</i> ₃	$+\frac{1}{2}$	$-\frac{1}{2}$	0	
			strangeness:-1	

Heavy quarks

flavor	С	Ь	t
mass [GeV]	1.28 ± 0.03	$4.18\substack{+0.04 \\ -0.03}$	173.1 ± 0.6
charge $[e > 0]$	$\frac{2}{3}$	$-\frac{1}{3}$	$\frac{2}{3}$
<i>I</i> ₃	0	0	0
	charm: +1	bottom: -1	top: +1

See http://pdg.lbl.gov

Sech quark flavor comes with three colors

Seach quark flavor comes with three colors

Motivation

$$\Delta^{++}(S_z=\frac{3}{2})=u\uparrow u\uparrow u\uparrow u\uparrow$$

Sech quark flavor comes with three colors

Motivation

$$\Delta^{++}(S_z=\frac{3}{2})=u\uparrow u\uparrow u\uparrow u\uparrow$$

• Contradiction to Pauli principle

Sech quark flavor comes with three colors

Motivation

$$\Delta^{++}(S_z=\frac{3}{2})=u\uparrow u\uparrow u\uparrow u\uparrow$$

- Contradiction to Pauli principle
- Solution: Slater determinant

$$\frac{1}{\sqrt{6}} \begin{vmatrix} r_1 & g_1 & b_1 \\ r_2 & g_2 & b_2 \\ r_3 & g_3 & b_3 \end{vmatrix}$$

Sech quark flavor comes with three colors

Motivation

$$\Delta^{++}(S_z=\frac{3}{2})=u\uparrow u\uparrow u\uparrow u\uparrow$$

- Contradiction to Pauli principle
- Solution: Slater determinant

$$\frac{1}{\sqrt{6}} \begin{vmatrix} r_1 & g_1 & b_1 \\ r_2 & g_2 & b_2 \\ r_3 & g_3 & b_3 \end{vmatrix}$$

$$\frac{1}{\sqrt{N_c!}} \epsilon_{i_1 \dots i_{N_c}} \chi^{i_1} \otimes \dots \otimes \chi^{i_{N_c}}$$

() To each quark q there exists an antiquark \bar{q} with

To each quark q there exists an antiquark q with
spin 1/2

- **(**) To each quark q there exists an antiquark \bar{q} with
 - spin 1/2
 - the same mass, $m_u = m_{\bar{u}}$, etc.

() To each quark q there exists an antiquark \bar{q} with

- spin 1/2
- the same mass, $m_u = m_{\bar{u}}$, etc.
- opposite charge, $Q_{ar{u}}=-2/3$, etc.

() To each quark q there exists an antiquark \bar{q} with

Stefan Scherer

- spin 1/2
- the same mass, $m_u = m_{\bar{u}}$, etc.
- opposite charge, $Q_{\bar{u}}=-2/3$, etc.
- opposite internal quantum numbers, $I_3 = -1/2$ for \bar{u} , etc., S = +1 for \bar{s} , etc.

UNIVERSITÀ

- **(**) To each quark q there exists an antiquark \bar{q} with
 - spin 1/2
 - the same mass, $m_u = m_{\bar{u}}$, etc.
 - opposite charge, $Q_{\bar{u}}=-2/3$, etc.
 - opposite internal quantum numbers, $I_3 = -1/2$ for \bar{u} , etc., S = +1 for \bar{s} , etc.
 - opposite color quantum numbers, r vs. \bar{r} , etc.

UNIVERSITÀ

- **(**) To each quark q there exists an antiquark \bar{q} with
 - spin 1/2
 - the same mass, $m_u = m_{\bar{u}}$, etc.
 - opposite charge, $Q_{\bar{u}} = -2/3$, etc.
 - opposite internal quantum numbers, $I_3 = -1/2$ for \bar{u} , etc., S = +1 for \bar{s} , etc.
 - opposite color quantum numbers, r vs. \bar{r} , etc.
- Ø 8 gluons (spin 1, massless) mediate the interaction

- **(**) To each quark q there exists an antiquark \bar{q} with
 - spin 1/2
 - the same mass, $m_u = m_{\bar{u}}$, etc.
 - opposite charge, $Q_{\bar{u}}=-2/3$, etc.
 - opposite internal quantum numbers, $I_3 = -1/2$ for \bar{u} , etc., S = +1 for \bar{s} , etc.
 - opposite color quantum numbers, r vs. \bar{r} , etc.
- Ø 8 gluons (spin 1, massless) mediate the interaction
- O The interaction is flavor independent

- **(**) To each quark q there exists an antiquark \bar{q} with
 - spin 1/2
 - the same mass, $m_u = m_{\bar{u}}$, etc.
 - opposite charge, $Q_{\bar{u}}=-2/3$, etc.
 - opposite internal quantum numbers, $I_3=-1/2$ for \bar{u} , etc., S=+1 for \bar{s} , etc.
 - opposite color quantum numbers, r vs. \bar{r} , etc.
- Ø 8 gluons (spin 1, massless) mediate the interaction
- O The interaction is flavor independent
- Free quarks and gluons have not been observed (⇒ color-confinement hypothesis)

- **(**) To each quark q there exists an antiquark \bar{q} with
 - spin 1/2
 - the same mass, $m_u = m_{\bar{u}}$, etc.
 - opposite charge, $Q_{\bar{u}}=-2/3$, etc.
 - opposite internal quantum numbers, $I_3=-1/2$ for \bar{u} , etc., S=+1 for \bar{s} , etc.
 - opposite color quantum numbers, r vs. \bar{r} , etc.
- Ø 8 gluons (spin 1, massless) mediate the interaction
- O The interaction is flavor independent
- Free quarks and gluons have not been observed (\Rightarrow color-confinement hypothesis)
- Baryons: qqq states; color neutral via Slater determinant

- **(**) To each quark q there exists an antiquark \bar{q} with
 - spin 1/2
 - the same mass, $m_u = m_{\bar{u}}$, etc.
 - opposite charge, $Q_{\bar{u}}=-2/3$, etc.
 - opposite internal quantum numbers, $I_3=-1/2$ for \bar{u} , etc., S=+1 for \bar{s} , etc.
 - opposite color quantum numbers, r vs. \bar{r} , etc.
- Ø 8 gluons (spin 1, massless) mediate the interaction
- O The interaction is flavor independent
- Free quarks and gluons have not been observed (\Rightarrow color-confinement hypothesis)
- Baryons: qqq states; color neutral via Slater determinant
- **1** Mesons: $q\bar{q}$ (quark-antiquark) states; color neutral via $\frac{1}{\sqrt{3}}(r\bar{r} + g\bar{g} + b\bar{b})$