SU(N) and quarks 1

Aim: Classification of composite states

1. **Atoms**: Atomic nucleus and electron shell

- Nuclei: Protons and neutrons (Collective term: Nucleons \subset Baryons \subset Hadrons)

- Nucleons: Quarks (M. Gell-Mann, Phys. Lett. 8, 214 (1964))

James Joyce, *Finnegan’s Wake*: “three quarks for Muster Mark”
Aim: Classification of composite states

1. Atoms: Atomic nucleus and electron shell
2. Nuclei: Protons and neutrons (Collective term: Nucleons \(\subset\) baryons \(\subset\) hadrons)
<table>
<thead>
<tr>
<th></th>
<th>Aim: Classification of composite states</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Atoms: Atomic nucleus and electron shell</td>
</tr>
<tr>
<td>2</td>
<td>Nuclei: Protons and neutrons (Collective term: Nucleons \subset baryons \subset hadrons)</td>
</tr>
<tr>
<td>3</td>
<td>Nucleons: Quarks (M. Gell-Mann, Phys. Lett. 8, 214 (1964))</td>
</tr>
</tbody>
</table>
Aim: Classification of composite states

1. Atoms: Atomic nucleus and electron shell
2. Nuclei: Protons and neutrons (Collective term: Nucleons ⊂ baryons ⊂ hadrons)

A simpler and more elegant scheme can be constructed if we allow non-integral values for the charges. We can dispense entirely with the basic baryon b if we assign to the triplet t the following properties: spin $\frac{1}{2}$, $z = -\frac{1}{3}$, and baryon number $\frac{1}{3}$. We then refer to the members u^3_2, d^{-1}_2, and $s^{-\frac{1}{3}}$ of the triplet as "quarks" and the members of the anti-triplet as anti-quarks \bar{q}. Baryons can now be constructed from quarks by using the combinations $(q q q)$, $(q q q q q)$, etc., while mesons are made out of $(q \bar{q})$, $(q q \bar{q} q)$, etc. It is assuming that the lowest baryon configuration $(q q q)$ gives just the representations 1, 8, and 10 that have been observed, while the lowest meson configuration $(q \bar{q})$ similarly gives just 1 and 8.

6) James Joyce, Finnegans Wake: „three quarks for Muster Mark“
Physical motivation

Evidence for substructure of hadrons

Extension (form factors, e.g., root-mean-square charge radius of the proton $r_p^E = (0.8751 \pm 0.0061)$ fm)

Excitation spectrum

Deep inelastic scattering (pointlike partons)

Interpretation: Hadrons are (complicated) bound states of fundamental degrees of freedom

Fundamental Theory: Quantum chromodynamics (QCD)

QCD is a non-Abelian gauge theory with gauge group $G = SU(3)$

Matter fields of QCD (quarks) are fermions with spin 1/2, which show up in six different flavors...
Physical motivation

1. Evidence for substructure of hadrons

Evidence for substructure of hadrons

Extension (form factors, e.g., root-mean-square charge radius $r_p = (0.8751 \pm 0.0061)$ fm)

Excitation spectrum

Deep inelastic scattering (pointlike partons)

Interpretation: Hadrons are (complicated) bound states of fundamental degrees of freedom

Fundamental Theory: Quantum chromodynamics (QCD)

QCD is a non-Abelian gauge theory with gauge group $G_c = SU(3)$

Matter fields of QCD (quarks) are fermions with spin 1/2, which show up in six different flavors
Physical motivation

1. Evidence for substructure of hadrons
 - Extension (form factors, e.g., root-mean-square charge radius of the proton \(r_E^p = (0.8751 \pm 0.0061) \text{ fm} \))
Physical motivation

1. Evidence for substructure of hadrons
 - Extension (form factors, e.g., root-mean-square charge radius of the proton $r_E^p = (0.8751 \pm 0.0061) \text{ fm}$)
 - Excitation spectrum
Physical motivation

1. Evidence for substructure of hadrons
 - Extension (form factors, e.g., root-mean-square charge radius of the proton $r_E^p = (0.8751 \pm 0.0061)$ fm)
 - Excitation spectrum
 - Deep inelastic scattering (pointlike partons)
Physical motivation

1 Evidence for substructure of hadrons
 - Extension (form factors, e.g., root-mean-square charge radius of the proton $r_E^p = (0.8751 \pm 0.0061) \text{ fm}$)
 - Excitation spectrum
 - Deep inelastic scattering (pointlike partons)

2 Interpretation: Hadrons are (complicated) bound states of fundamental degrees of freedom
Physical motivation

1. **Evidence for substructure of hadrons**
 - Extension (form factors, e.g., root-mean-square charge radius of the proton $r_E^p = (0.8751 \pm 0.0061)\ \text{fm}$)
 - Excitation spectrum
 - Deep inelastic scattering (pointlike partons)

2. **Interpretation**: Hadrons are (complicated) bound states of fundamental degrees of freedom

3. **Fundamental Theory**: Quantum chromodynamics (QCD)
 QCD is a non-Abelian gauge theory with gauge group $G = \text{SU}(3)_c$ (c for *color*)
Physical motivation

1. **Evidence for substructure of hadrons**
 - Extension (form factors, e.g., root-mean-square charge radius of the proton $r_E^p = (0.8751 \pm 0.0061)$ fm)
 - Excitation spectrum
 - Deep inelastic scattering (pointlike partons)

2. **Interpretation:** Hadrons are (complicated) bound states of fundamental degrees of freedom

3. **Fundamental Theory:** Quantum chromodynamics (QCD)
 - QCD is a non-Abelian gauge theory with gauge group $G = SU(3)_c$ (c for color)

4. **Matter fields of QCD (quarks) are fermions with spin 1/2, which show up in six different flavors**
Light quarks

<table>
<thead>
<tr>
<th>flavor</th>
<th>u</th>
<th>d</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>mass [MeV]</td>
<td>$2.2^{+0.6}_{-0.4}$</td>
<td>$4.7^{+0.5}_{-0.4}$</td>
<td>96^{+8}_{-4}</td>
</tr>
<tr>
<td>charge [$e > 0$]</td>
<td>$\frac{2}{3}$</td>
<td>$-\frac{1}{3}$</td>
<td>$-\frac{1}{3}$</td>
</tr>
<tr>
<td>I_3</td>
<td>$+\frac{1}{2}$</td>
<td>$-\frac{1}{2}$</td>
<td>0</td>
</tr>
</tbody>
</table>

strangeness: -1
Heavy quarks

<table>
<thead>
<tr>
<th>flavor</th>
<th>c</th>
<th>b</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>mass [GeV]</td>
<td>1.28 ± 0.03</td>
<td>$4.18^{+0.04}_{-0.03}$</td>
<td>173.1 ± 0.6</td>
</tr>
<tr>
<td>charge [$e > 0$]</td>
<td>$\frac{2}{3}$</td>
<td>$-\frac{1}{3}$</td>
<td>$\frac{2}{3}$</td>
</tr>
<tr>
<td>l_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>charm: +1</td>
<td>bottom: -1</td>
<td>top: +1</td>
</tr>
</tbody>
</table>

See http://pdg.lbl.gov
Each quark flavor comes with three colors
Each quark flavor comes with three colors

Motivation

\[\Delta^{++} (S_z = \frac{3}{2}) = u \uparrow u \uparrow u \uparrow \]
Each quark flavor comes with three colors

- Motivation
 \[\Delta^{++}(S_z = \frac{3}{2}) = u \uparrow u \uparrow u \uparrow \]

- Contradiction to Pauli principle
Each quark flavor comes with three colors

- **Motivation**
 \[
 \Delta^{++}(S_z = \frac{3}{2}) = u \uparrow u \uparrow u \uparrow
 \]

- **Contradiction to Pauli principle**
- **Solution: Slater determinant**

\[
\frac{1}{\sqrt{6}} \begin{vmatrix}
 r_1 & g_1 & b_1 \\
 r_2 & g_2 & b_2 \\
 r_3 & g_3 & b_3
\end{vmatrix}
\]
Each quark flavor comes with three colors

- Motivation
 \[\Delta^{++}(S_z = \frac{3}{2}) = u \uparrow u \uparrow u \uparrow \]

- Contradiction to Pauli principle

- Solution: Slater determinant
 \[
 \frac{1}{\sqrt{6}}
 \begin{vmatrix}
 r_1 & g_1 & b_1 \\
 r_2 & g_2 & b_2 \\
 r_3 & g_3 & b_3
 \end{vmatrix}
 \]

- General \(N_c \):
 \[
 \frac{1}{\sqrt{N_c!}} \epsilon_{i_1 \ldots i_{N_c}} \chi^{i_1} \otimes \ldots \otimes \chi^{i_{N_c}}
 \]

Stefan Scherer

Symmetries in Physics: Introduction and Overview
To each quark q there exists an antiquark \bar{q} with

- the same mass, $m_q = m_{\bar{q}}$, etc.
- opposite charge, $Q_{\bar{q}} = -2/3$, etc.
- opposite internal quantum numbers, $I_3 = -1/2$ for \bar{u}, etc., $S = +1$ for \bar{s}, etc.
- opposite color quantum numbers, $r_{\bar{u}}$ vs. \bar{r}_u, etc.

8 gluons (spin 1, massless) mediate the interaction

The interaction is flavor independent

Free quarks and gluons have not been observed (\Rightarrow color-confinement hypothesis)

Baryons: qqq states; color neutral via Slater determinant

Mesons: $q\bar{q}$ (quark-antiquark) states; color neutral via

$$1/\sqrt{3} (r_{\bar{u}} r_u + g_{\bar{g}} g + b_{\bar{b}} b)$$
To each quark q there exists an antiquark \bar{q} with
- spin $1/2$
To each quark q there exists an antiquark \bar{q} with
- spin $1/2$
- the same mass, $m_u = m_{\bar{u}}$, etc.
To each quark q there exists an antiquark \bar{q} with

- spin $1/2$
- the same mass, $m_u = m_{\bar{u}}$, etc.
- opposite charge, $Q_{\bar{u}} = -2/3$, etc.
To each quark q there exists an antiquark \bar{q} with

- spin $1/2$
- the same mass, $m_u = m_{\bar{u}}$, etc.
- opposite charge, $Q_{\bar{u}} = -2/3$, etc.
- opposite internal quantum numbers, $l_3 = -1/2$ for \bar{u}, etc., $S = +1$ for \bar{s}, etc.
To each quark q there exists an antiquark \bar{q} with

- spin $1/2$
- the same mass, $m_u = m_{\bar{u}}$, etc.
- opposite charge, $Q_{\bar{u}} = -2/3$, etc.
- opposite internal quantum numbers, $l_3 = -1/2$ for \bar{u}, etc., $S = +1$ for \bar{s}, etc.
- opposite color quantum numbers, r vs. \bar{r}, etc.
To each quark q there exists an antiquark \bar{q} with
- spin $1/2$
- the same mass, $m_u = m_{\bar{u}}$, etc.
- opposite charge, $Q_{\bar{u}} = -2/3$, etc.
- opposite internal quantum numbers, $l_3 = -1/2$ for \bar{u}, etc., $S = +1$ for \bar{s}, etc.
- opposite color quantum numbers, r vs. \bar{r}, etc.

8 gluons (spin 1, massless) mediate the interaction
To each quark q there exists an antiquark \bar{q} with

- spin 1/2
- the same mass, $m_u = m_{\bar{u}}$, etc.
- opposite charge, $Q_{\bar{u}} = -2/3$, etc.
- opposite internal quantum numbers, $l_3 = -1/2$ for \bar{u}, etc., $S = +1$ for \bar{s}, etc.
- opposite color quantum numbers, r vs. \bar{r}, etc.

8 gluons (spin 1, massless) mediate the interaction

The interaction is flavor independent
6 To each quark q there exists an antiquark \bar{q} with
 - spin $1/2$
 - the same mass, $m_u = m_{\bar{u}}$, etc.
 - opposite charge, $Q_{\bar{u}} = -2/3$, etc.
 - opposite internal quantum numbers, $I_3 = -1/2$ for \bar{u}, etc., $S = +1$ for \bar{s}, etc.
 - opposite color quantum numbers, r vs. \bar{r}, etc.

7 8 gluons (spin 1, massless) mediate the interaction

8 The interaction is flavor independent

9 Free quarks and gluons have not been observed (\Rightarrow color-confinement hypothesis)
To each quark q there exists an antiquark \bar{q} with
- spin $1/2$
- the same mass, $m_u = m_{\bar{u}}$, etc.
- opposite charge, $Q_{\bar{u}} = -2/3$, etc.
- opposite internal quantum numbers, $I_3 = -1/2$ for \bar{u}, etc., $S = +1$ for \bar{s}, etc.
- opposite color quantum numbers, r vs. \bar{r}, etc.

8 gluons (spin 1, massless) mediate the interaction

The interaction is flavor independent

Free quarks and gluons have not been observed (\Rightarrow color-confinement hypothesis)

Baryons: qqq states; color neutral via Slater determinant
To each quark q there exists an antiquark \bar{q} with
- spin $1/2$
- the same mass, $m_u = m_{\bar{u}}$, etc.
- opposite charge, $Q_{\bar{u}} = -2/3$, etc.
- opposite internal quantum numbers, $l_3 = -1/2$ for \bar{u}, etc., $S = +1$ for \bar{s}, etc.
- opposite color quantum numbers, r vs. \bar{r}, etc.

8 gluons (spin 1, massless) mediate the interaction

The interaction is flavor independent

Free quarks and gluons have not been observed (\Rightarrow color-confinement hypothesis)

Baryons: qqq states; color neutral via Slater determinant

Mesons: $q\bar{q}$ (quark-antiquark) states; color neutral via
$$\frac{1}{\sqrt{3}}(r\bar{r} + g\bar{g} + b\bar{b})$$