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4.3.3 Algorithm for the determination of Clebsch-Gordan coeffi-
cients

Let us consider fixed j1, j2, and j with |j1 − j2| ≤ j ≤ j1 + j2. We describe a procedure for

calculating all Clebsch-Gordan coefficients

(
j1 j2 j
m1 m2 m

)
. We make use of the abbreviated

form
|m1;m2〉 := |j1,m1; j2,m2〉 and |j,m〉 := |(j1, j2)j,m〉.

The eigenvalue of J3 = J3(1) + J3(2) is additive, resulting in a vanishing Clebsch-Gordan
coefficient unless m = m1 +m2.

1. We start with the coefficients for a maximal value of j, i.e., j = j1 + j2.

• For the state with maximal j and maximal m = j one has

|j, j〉 = |j1; j2〉 ⇒
(
j1 j2 j1 + j2
j1 j2 j1 + j2

)
= 1.

By choosing the value +1 rather than −1 we made use of the phase convention of
Eq. (4.23).

• We now apply the lowering operator J− = J−(1) + J−(2) to this state. In this
context, we make use of

J−|j, j〉 =
√

(j + j)(j − j + 1)|j, j − 1〉 =
√

2j|j, j − 1〉

to obtain

J−|j, j〉 =
√

2j|j, j − 1〉 =
√

2j1|j1 − 1; j2〉+
√

2j2|j1; j2 − 1〉.

Projection, i.e., multiplying with the bras 〈j1 − 1, ; j2| and 〈j1; j2 − 1|, results in the
Clebsch-Gordan coefficients(

j1 j2 j1 + j2
j1 − 1 j2 j1 + j2 − 1

)
= 〈j1 − 1; j2|j1 + j2, j1 + j2 − 1〉

=

√
j1

j1 + j2
,(

j1 j2 j1 + j2
j1 j2 − 1 j1 + j2 − 1

)
= 〈j1; j2 − 1|j1 + j2, j1 + j2 − 1〉

=

√
j2

j1 + j2
.

• 2(j1 + j2)-fold application of the lowering operator generates all Clebsch-Gordan
coefficients of the type (

j1 j2 j1 + j2
m1 m2 m

)
,

where m < j1 + j2.



2. Next we consider the case j = j1 + j2 − 1.

• We express the state with maximal m as a linear combination

|j, j〉 = α|j1; j2 − 1〉+ β|j1 − 1; j2〉,

where α and β are real, because Clebsch-Gordan coefficients are by definition real.

• Determination of α and β:

– The normalization of the state results in α2 + β2 = 1.

– Because of the Condon-Shortley convention we have α ≥ 0.

– Apply the raising operator J+:

0 = J+|j, j〉
= α

√
[j2 − (j2 − 1)](j2 + j2 − 1 + 1)︸ ︷︷ ︸

=
√

2j2

|j1; j2〉

+ β
√

2j1|j1; j2〉

=
√

2
(
α
√
j2 + β

√
j1

)
|j1; j2〉.

Because |j1; j2〉 is not the zero vector, we conclude

0 =
√
j2α +

√
j1β ⇒ β = −

√
j2/j1α.

Insertion into the normalization condition α2(1 + j2/j1) = 1 yields, in combina-
tion with the Condon-Shortley condition,

α =

(
j1 j2 j1 + j2 − 1
j1 j2 − 1 j1 + j2 − 1

)
=

√
j1

j1 + j2
,

β =

(
j1 j2 j1 + j2 − 1

j1 − 1 j2 j1 + j2 − 1

)
= −

√
j2

j1 + j2
.

• 2(j1 + j2− 1)-fold application of the lowering operator generates all Clebsch-Gordan
coefficients of the type (

j1 j2 j1 + j2 − 1
m1 m2 m

)
mit m < j1 + j2 − 1.

3. j = j1 + j2 − 2 (Exercise)

4. The procedure is repeated until j = |j1 − j2|.



4.3.4 Poperties of Clebsch-Gordan coefficients

• Selection rule (
j1 j2 j
m1 m2 m

)
= 0,

if one of the following conditions is satisfied: m 6= m1 +m2, j > j1 + j2 or j < |j1 − j2|.

• The Clebsch-Gordan coefficients are real. In combination with the Condon-Shortley con-
dition of Eq. (4.23) they are uniquely fixed.

• The absolute value of a Clebsch-Gordan coefficient is always smaller than or equal to 1.

(C is a real orthogonal n× n matrix, i.e., CCT = 1n×n. Then applies

1 =
n∑
j=1

CijC
T
ji =

n∑
j=1

C2
ij for i = 1, . . . , n,

⇒ C2
ij ≤ 1 for i, j = 1, . . . , n,

⇒ |Cij| ≤ 1 for i, j = 1, . . . , n.

)

• Recursion relation (Exercise)

√
(j ±m)(j ∓m+ 1)

(
j1 j2 j
m1 m2 m∓ 1

)
=
√

(j1 ∓m1)(j1 ±m1 + 1)

(
j1 j2 j

m1 ± 1 m2 m

)
+
√

(j2 ∓m2)(j2 ±m2 + 1)

(
j1 j2 j
m1 m2 ± 1 m

)
.

• Symmetry properties (see A. Lindner, Drehimpulse in der Quantenmechanik, Teubner,
Stuttgart, 1984)(

j1 j2 j
m1 m2 m

)
=

(
j2 j1 j
−m2 −m1 −m

)
= (−)j1+j2−j

(
j2 j1 j
m2 m1 m

)
= (−)j1+j2−j

(
j1 j2 j
−m1 −m2 −m

)
.

In particular,
|(j1, j2)j,m〉 = (−)j1+j2−j|(j2, j1)j,m〉.




