Handout 11 (read by Jan. 15)

4.3.3 Algorithm for the determination of Clebsch-Gordan coefficients

Let us consider fixed j_{1}, j_{2}, and j with $\left|j_{1}-j_{2}\right| \leq j \leq j_{1}+j_{2}$. We describe a procedure for calculating all Clebsch-Gordan coefficients $\left(\begin{array}{cc|c}j_{1} & j_{2} & j \\ m_{1} & m_{2} & m\end{array}\right)$. We make use of the abbreviated form

$$
\left|m_{1} ; m_{2}\right\rangle:=\left|j_{1}, m_{1} ; j_{2}, m_{2}\right\rangle \quad \text { and } \quad|j, m\rangle:=\left|\left(j_{1}, j_{2}\right) j, m\right\rangle .
$$

The eigenvalue of $J_{3}=J_{3}(1)+J_{3}(2)$ is additive, resulting in a vanishing Clebsch-Gordan coefficient unless $m=m_{1}+m_{2}$.

1. We start with the coefficients for a maximal value of j, i.e., $j=j_{1}+j_{2}$.

- For the state with maximal j and maximal $m=j$ one has

$$
|j, j\rangle=\left|j_{1} ; j_{2}\right\rangle \quad \Rightarrow \quad\left(\begin{array}{cc|c}
j_{1} & j_{2} & j_{1}+j_{2} \\
j_{1} & j_{2} & j_{1}+j_{2}
\end{array}\right)=1
$$

By choosing the value +1 rather than -1 we made use of the phase convention of Eq. (4.23).

- We now apply the lowering operator $J_{-}=J_{-}(1)+J_{-}(2)$ to this state. In this context, we make use of

$$
J_{-}|j, j\rangle=\sqrt{(j+j)(j-j+1)}|j, j-1\rangle=\sqrt{2 j}|j, j-1\rangle
$$

to obtain

$$
J_{-}|j, j\rangle=\sqrt{2 j}|j, j-1\rangle=\sqrt{2 j_{1}}\left|j_{1}-1 ; j_{2}\right\rangle+\sqrt{2 j_{2}}\left|j_{1} ; j_{2}-1\right\rangle
$$

Projection, i.e., multiplying with the bras $\left\langle j_{1}-1, ; j_{2}\right|$ and $\left\langle j_{1} ; j_{2}-1\right|$, results in the Clebsch-Gordan coefficients

$$
\begin{aligned}
\left(\begin{array}{cc|c}
j_{1} & j_{2} & j_{1}+j_{2} \\
j_{1}-1 & j_{2} & j_{1}+j_{2}-1
\end{array}\right) & =\left\langle j_{1}-1 ; j_{2} \mid j_{1}+j_{2}, j_{1}+j_{2}-1\right\rangle \\
& =\sqrt{\frac{j_{1}}{j_{1}+j_{2}}}, \\
\left(\begin{array}{cc|c}
j_{1} & j_{2} & j_{1}+j_{2} \\
j_{1} & j_{2}-1 & j_{1}+j_{2}-1
\end{array}\right) & =\left\langle j_{1} ; j_{2}-1 \mid j_{1}+j_{2}, j_{1}+j_{2}-1\right\rangle \\
& =\sqrt{\frac{j_{2}}{j_{1}+j_{2}}} .
\end{aligned}
$$

- $2\left(j_{1}+j_{2}\right)$-fold application of the lowering operator generates all Clebsch-Gordan coefficients of the type

$$
\left(\begin{array}{cc|c}
j_{1} & j_{2} & j_{1}+j_{2} \\
m_{1} & m_{2} & m
\end{array}\right)
$$

where $m<j_{1}+j_{2}$.
2. Next we consider the case $j=j_{1}+j_{2}-1$.

- We express the state with maximal m as a linear combination

$$
|j, j\rangle=\alpha\left|j_{1} ; j_{2}-1\right\rangle+\beta\left|j_{1}-1 ; j_{2}\right\rangle,
$$

where α and β are real, because Clebsch-Gordan coefficients are by definition real.

- Determination of α and β :
- The normalization of the state results in $\alpha^{2}+\beta^{2}=1$.
- Because of the Condon-Shortley convention we have $\alpha \geq 0$.
- Apply the raising operator J_{+}:

$$
\begin{aligned}
0= & J_{+}|j, j\rangle \\
= & \alpha \underbrace{\sqrt{\left[j_{2}-\left(j_{2}-1\right)\right]\left(j_{2}+j_{2}-1+1\right)}}_{=\sqrt{2 j_{2}}}\left|j_{1} ; j_{2}\right\rangle \\
& +\beta \sqrt{2 j_{1}}\left|j_{1} ; j_{2}\right\rangle \\
= & \sqrt{2}\left(\alpha \sqrt{j_{2}}+\beta \sqrt{j_{1}}\right)\left|j_{1} ; j_{2}\right\rangle .
\end{aligned}
$$

Because $\left|j_{1} ; j_{2}\right\rangle$ is not the zero vector, we conclude

$$
0=\sqrt{j_{2}} \alpha+\sqrt{j_{1}} \beta \Rightarrow \beta=-\sqrt{j_{2} / j_{1}} \alpha .
$$

Insertion into the normalization condition $\alpha^{2}\left(1+j_{2} / j_{1}\right)=1$ yields, in combination with the Condon-Shortley condition,

$$
\begin{aligned}
& \alpha=\left(\begin{array}{cc|c}
j_{1} & j_{2} & j_{1}+j_{2}-1 \\
j_{1} & j_{2}-1 & j_{1}+j_{2}-1
\end{array}\right)=\sqrt{\frac{j_{1}}{j_{1}+j_{2}}}, \\
& \beta=\left(\begin{array}{cc|c}
j_{1} & j_{2} & j_{1}+j_{2}-1 \\
j_{1}-1 & j_{2} & j_{1}+j_{2}-1
\end{array}\right)=-\sqrt{\frac{j_{2}}{j_{1}+j_{2}}} .
\end{aligned}
$$

- $2\left(j_{1}+j_{2}-1\right)$-fold application of the lowering operator generates all Clebsch-Gordan coefficients of the type

$$
\left(\begin{array}{cc|c}
j_{1} & j_{2} & j_{1}+j_{2}-1 \\
m_{1} & m_{2} & m
\end{array}\right)
$$

mit $m<j_{1}+j_{2}-1$.
3. $j=j_{1}+j_{2}-2$ (Exercise)
4. The procedure is repeated until $j=\left|j_{1}-j_{2}\right|$.

4.3.4 Poperties of Clebsch-Gordan coefficients

- Selection rule

$$
\left(\begin{array}{cc|c}
j_{1} & j_{2} & j \\
m_{1} & m_{2} & m
\end{array}\right)=0,
$$

if one of the following conditions is satisfied: $m \neq m_{1}+m_{2}, j>j_{1}+j_{2}$ or $j<\left|j_{1}-j_{2}\right|$.

- The Clebsch-Gordan coefficients are real. In combination with the Condon-Shortley condition of Eq. (4.23) they are uniquely fixed.
- The absolute value of a Clebsch-Gordan coefficient is always smaller than or equal to 1 . (C is a real orthogonal $n \times n$ matrix, i.e., $C C^{T}=\mathbb{1}_{n \times n}$. Then applies

$$
\begin{aligned}
& 1=\sum_{j=1}^{n} C_{i j} C_{j i}^{T}=\sum_{j=1}^{n} C_{i j}^{2} \text { for } i=1, \ldots, n, \\
& \Rightarrow \quad C_{i j}^{2} \leq 1 \text { for } i, j=1, \ldots, n, \\
& \Rightarrow \quad\left|C_{i j}\right| \leq 1 \text { for } i, j=1, \ldots, n .
\end{aligned}
$$

)

- Recursion relation (Exercise)

$$
\begin{aligned}
& \sqrt{(j \pm m)(j \mp m+1)}\left(\begin{array}{cc|c}
j_{1} & j_{2} & j \\
m_{1} & m_{2} & m \mp 1
\end{array}\right) \\
& =\sqrt{\left(j_{1} \mp m_{1}\right)\left(j_{1} \pm m_{1}+1\right)}\left(\begin{array}{cc|c}
j_{1} & j_{2} & j \\
m_{1} \pm 1 & m_{2} & m
\end{array}\right) \\
& \quad+\sqrt{\left(j_{2} \mp m_{2}\right)\left(j_{2} \pm m_{2}+1\right)}\left(\begin{array}{ccc|c}
j_{1} & j_{2} & j \\
m_{1} & m_{2} \pm 1 & m
\end{array}\right) .
\end{aligned}
$$

- Symmetry properties (see A. Lindner, Drehimpulse in der Quantenmechanik, Teubner, Stuttgart, 1984)

$$
\begin{aligned}
\left(\begin{array}{cc|c}
j_{1} & j_{2} & j \\
m_{1} & m_{2} & m
\end{array}\right) & =\left(\begin{array}{cc|c}
j_{2} & j_{1} & j \\
-m_{2} & -m_{1} & -m
\end{array}\right) \\
& =(-)^{j_{1}+j_{2}-j}\left(\begin{array}{cc|c}
j_{2} & j_{1} & j \\
m_{2} & m_{1} & m
\end{array}\right) \\
& =(-)^{j_{1}+j_{2}-j}\left(\begin{array}{cc|c}
j_{1} & j_{2} & j \\
-m_{1} & -m_{2} & -m
\end{array}\right) .
\end{aligned}
$$

In particular,

$$
\left|\left(j_{1}, j_{2}\right) j, m\right\rangle=(-)^{j_{1}+j_{2}-j}\left|\left(j_{2}, j_{1}\right) j, m\right\rangle .
$$

