Name:

Symmetries in Physics (WS 2018/2019)
 Exercise 6

1. [2] Verify $\sum_{j=\left|j_{1}-j_{2}\right|}^{j_{1}+j_{2}}(2 j+1)=\left(2 j_{1}+1\right)\left(2 j_{2}+1\right)$ for $j_{1}, j_{2} \in\left\{0, \frac{1}{2}, 1, \frac{3}{2}, \ldots\right\}$.
2. [2] Define $B=\varphi \mathcal{T}_{3}$ with $0 \leq \varphi<2 \pi$ and

$$
\mathcal{T}_{3}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

Verify explicitly

$$
R_{3}(\varphi):=\exp (B)=\left(\begin{array}{ccc}
\cos (\varphi) & -\sin (\varphi) & 0 \\
\sin (\varphi) & \cos (\varphi) & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Remark: The rotation matrices $R_{1}(\varphi)$ and $R_{2}(\varphi)$ are obtained analogously using $B=\varphi \mathcal{T}_{1}$ and $B=\varphi \mathcal{T}_{2}$, respectively.
3. [2] Consider the decomposition

$$
\left|j_{1}, m_{1} ; j_{2}, m_{2}\right\rangle=\sum_{j, m}\left(\begin{array}{cc|c}
j_{1} & j_{2} & j \\
m_{1} & m_{2} & m
\end{array}\right)\left|\left(j_{1}, j_{2}\right) j, m\right\rangle .
$$

Using

$$
\sum_{m_{1}, m_{2}}\left(\begin{array}{cc|c}
j_{1} & j_{2} & j \\
m_{1} & m_{2} & m
\end{array}\right)\left(\begin{array}{cc|c}
j_{1} & j_{2} & j^{\prime} \\
m_{1} & m_{2} & m^{\prime}
\end{array}\right)=\delta_{j j^{\prime}} \delta_{m m^{\prime}},
$$

derive the relation

$$
\left|\left(j_{1}, j_{2}\right) j, m\right\rangle=\sum_{m_{1}, m_{2}}\left(\begin{array}{cc|c}
j_{1} & j_{2} & j \\
m_{1} & m_{2} & m
\end{array}\right)\left|j_{1}, m_{1} ; j_{2}, m_{2}\right\rangle .
$$

4. [2] Using $\left\langle\left(j_{1}, j_{2}\right) j, m\right| J_{ \pm}\left|j_{1}, m_{1} ; j_{2}, m_{2}\right\rangle, J_{ \pm}=J_{1} \pm i J_{2}$, derive the recursion relation

$$
\begin{aligned}
& \sqrt{(j \pm m)(j \mp m+1)}\left(\begin{array}{cc|c}
j_{1} & j_{2} & j \\
m_{1} & m_{2} & m \mp 1
\end{array}\right) \\
& =\sqrt{\left(j_{1} \mp m_{1}\right)\left(j_{1} \pm m_{1}+1\right)}\left(\begin{array}{cc|c}
j_{1} & j_{2} & j \\
m_{1} \pm 1 & m_{2} & m
\end{array}\right) \\
& +\sqrt{\left(j_{2} \mp m_{2}\right)\left(j_{2} \pm m_{2}+1\right)}\left(\begin{array}{cc|c}
j_{1} & j_{2} & j \\
m_{1} & m_{2} \pm 1 & m
\end{array}\right) .
\end{aligned}
$$

Hint: $\langle j, m| J_{ \pm}=\left(J_{\mp}|j, m\rangle\right)^{\dagger}$.
5. [5] Consider j_{1}, j_{2}, and j with $\left|j_{1}-j_{2}\right| \leq j \leq j_{1}+j_{2}$. We make use of the abbreviated form

$$
\begin{aligned}
\left|m_{1} ; m_{2}\right\rangle & :=\left|j_{1}, m_{1} ; j_{2}, m_{2}\right\rangle, \\
|j, m\rangle & :=\left|\left(j_{1}, j_{2}\right) j, m\right\rangle .
\end{aligned}
$$

Determine in step 3 of subsection 4.3.3 (Handout 11) the coefficients α, β, and γ of the decomposition

$$
\left|j_{1}+j_{2}-2, j_{1}+j_{2}-2\right\rangle=\alpha\left|j_{1} ; j_{2}-2\right\rangle+\beta\left|j_{1}-1 ; j_{2}-1\right\rangle+\gamma\left|j_{1}-2 ; j_{2}\right\rangle
$$

6. [5] Using the ladder operators, determine in analogy to the lecture the ClebschGordan coefficients

$$
\begin{aligned}
& \left(\begin{array}{rr|r}
1 & \frac{1}{2} & \frac{3}{2} \\
-1 & \frac{1}{2} & -\frac{1}{2}
\end{array}\right), \quad\left(\begin{array}{rr|r}
1 & \frac{1}{2} & \frac{3}{2} \\
0 & -\frac{1}{2} & -\frac{1}{2}
\end{array}\right), \quad\left(\begin{array}{rr|r}
1 & \frac{1}{2} & \frac{3}{2} \\
-1 & -\frac{1}{2} & -\frac{3}{2}
\end{array}\right), \\
& \left(\begin{array}{rr|r}
1 & \frac{1}{2} & \frac{1}{2} \\
1 & -\frac{1}{2} & \frac{1}{2}
\end{array}\right), \quad\left(\begin{array}{ll|l}
1 & \frac{1}{2} & \frac{1}{2} \\
0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right), \quad\left(\begin{array}{rr|r}
1 & \frac{1}{2} & \frac{1}{2} \\
0 & -\frac{1}{2} & -\frac{1}{2}
\end{array}\right), \quad\left(\begin{array}{rr|r}
1 & \frac{1}{2} & \frac{1}{2} \\
-1 & \frac{1}{2} & -\frac{1}{2}
\end{array}\right) .
\end{aligned}
$$

Hint: If applicable, you may also use the symmetry properties of subsection 4.3.4 (Handout 11).
7. Consider pion-nucleon scattering.
(a) [1] Identify the eight independent physical reactions which are consistent with charge conservation.
Hint: Because of the time-reversal invariance of the strong interaction, the reactions $\pi^{0} p \rightarrow \pi^{+} n$ and $\pi^{+} n \rightarrow \pi^{0} p$ do not count as independent reactions.
(b) [4] The invariance of the Hamilton operator of the strong interaction with respect to $\mathrm{SU}(2)$ (isospin symmetry) results in the invariance of the S matrix under $\operatorname{SU}(2)$. Using

$$
\left\langle I^{\prime}, M_{I}^{\prime}\right| T\left|I, M_{I}\right\rangle=T_{I} \delta_{I^{\prime} I} \delta_{M_{I}^{\prime} M_{I}}
$$

express the eight processes in terms of the isospin amplitudes $T_{\frac{1}{2}}$ and $T_{\frac{3}{2}}$.
(c) [2] Let

$$
\begin{aligned}
& T_{A}:=T\left(\pi^{+} n \rightarrow \pi^{+} n\right), \\
& T_{B}:=T\left(\pi^{+} n \rightarrow \pi^{0} p\right) .
\end{aligned}
$$

Determine $\left|T_{A}\right|^{2}+\left|T_{B}\right|^{2}$ using the isospin amplitudes. Note that T_{A} and T_{B} are complex numbers.
(d) [1] In the Δ-resonance region, we may neglect $T_{\frac{1}{2}}$ in comparison to $T_{\frac{3}{2}}$. What do you obtain for the ratio $\sigma\left(\pi^{+} p\right) / \sigma\left(\pi^{-} p\right)$ of the elastic cross sections?
8. We consider the strong decay of a nucleon resonance N^{*} with isospin $I=\frac{1}{2}$ into a πN final state.
(a) [1] How many independent isospin amplitudes are required to describe the decay?
(b) [2] What is the relation between the amplitudes of the decays $N^{*+} \rightarrow \pi^{+} n$ and $N^{*+} \rightarrow \pi^{0} p$?
(c) [1] The rate $1 / \tau$ of a decay is proportional to the absolute value square of the matrix element. What is the ratio of the rates of the two decays?

