Theoretical Elementary Particle Physics Exercise 6

10 January 2019

1 General idea (10 points)

1.1 Mandelstam variables (5 points)

Show that the *n*-point amplitude depends on (3n - 10) independent Mandelstam variables.

1.2 Subtractions (5 points)

Write down the dispersive representation for $\log(s)$. Hint: at least one subtraction is necessary.

2 Elastic scattering (20 points)

Consider $2 \rightarrow 2$ elastic scattering of the particles with mass m. The partial wave decomposition for the amplitude is then

$$A(s,t) = \sum_{l=0}^{\infty} (2l+1)a_l(s)P_l(\cos\theta), \quad s = (p_1 + p_2)^2,$$
(1)

where θ is the scattering angle, P_l are Legendre polynomials and unitarity relation

Im
$$a_l = \rho(s)|a_l|^2$$
, $s \ge 4m^2$. (2)

- (a) (10 points) Using unitarity constraint, show that elastic partial wave amplitude can be written in terms of one function: the phase shift $\delta_l(s)$.
- (b) (10 points) Derive the unitarity relation for the inverse partial wave amplitude.

3 Triangle diagramm (70 points)

Consider simple triangle diagram shown on Fig. 1, where all particles are scalars and $q_1^2 = q_2^2 = 0$.

Figure 1: The triangle diagram for the scalar theory

- (a) (30 points) Write down the expression for the amplitude T(s) and evaluate the loop integral explicitly.
- (b) (40 points) Calculate the discontinuity of the amplitude using the cutting rules and restore the full amplitude as a dispersive integral over the cut in the complex *s*-plane.