Theoretical Elementary Particle Physics Exercise 6

10 January 2019

1 General idea (10 points)

1.1 Mandelstam variables (5 points)

Show that the n-point amplitude depends on $(3 n-10)$ independent Mandelstam variables.

1.2 Subtractions (5 points)

Write down the dispersive representation for $\log (s)$. Hint: at least one subtraction is necessary.

2 Elastic scattering (20 points)

Consider $2 \rightarrow 2$ elastic scattering of the particles with mass m. The partial wave decomposition for the amplitude is then

$$
\begin{equation*}
A(s, t)=\sum_{l=0}^{\infty}(2 l+1) a_{l}(s) P_{l}(\cos \theta), \quad s=\left(p_{1}+p_{2}\right)^{2} \tag{1}
\end{equation*}
$$

where θ is the scattering angle, P_{l} are Legendre polynomials and unitarity relation

$$
\begin{equation*}
\operatorname{Im} a_{l}=\rho(s)\left|a_{l}\right|^{2}, \quad s \geq 4 m^{2} . \tag{2}
\end{equation*}
$$

(a) (10 points) Using unitarity constraint, show that elastic partial wave amplitude can be written in terms of one function: the phase shift $\delta_{l}(s)$.
(b) (10 points) Derive the unitarity relation for the inverse partial wave amplitude.

3 Triangle diagramm (70 points)

Consider simple triangle diagram shown on Fig. 1, where all particles are scalars and $q_{1}^{2}=q_{2}^{2}=0$.

Figure 1: The triangle diagram for the scalar theory
(a) (30 points) Write down the expression for the amplitude $T(s)$ and evaluate the loop integral explicitly.
(b) (40 points) Calculate the discontinuity of the amplitude using the cutting rules and restore the full amplitude as a dispersive integral over the cut in the complex s-plane.

