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1 Running mass and anomalous dimension in QCD (50 points)

We define a running quark mass m(u) through the equation

u%m(u) = Ymm(p), (1)

where 7, is the so-called anomalous dimension of the mass.

(a) (10 points) Show first that ~,, is equivalently given through the renormalization group equation
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where Z,, is the mass renormalization constant.

Ym = —

(b) (15 points) The anomalous dimension of the mass can be expanded in a perturbation series in
the strong coupling constant as:
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Use the known expression for Z,, =1 — %‘—: to derive the value of 7% . Hint: formula
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is useful and the expression for 3 is shown in Eq. 7.

(c) (25 points) By inserting Eq. 3 into Eq. 1, derive the one-loop expression of the running quark
mass:
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with d,,, = 4/(11 — 2/3Ny) and where 7 is an integration constant (the mass analog of Aqcp )
that equals 7 = m(Q? = eAgp) where e stands for Euler’s number.
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2 Running coupling constant in QCD in two
points)
In QCD, the g-function in two loop order is of the form
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Show that the running coupling constant can be written as:
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Hints: the strategy in generally similar to the one where only 1-loop contribution is considered.

Integrate between two mass scales and separate the dependence on each scale
LHS and RHS are equal to a constant that is chosen to be _4—?70 In (A<2;20D)~

which implies that both

In general, we are interested in Q2% > AéCD because perturbative expansion is valid in that case.

Therefore, the following approximations can be applied:
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