Theoretical Elementary Particle Physics Exercise 5

7 January 2019

1 Running mass and anomalous dimension in QCD (50 points)

We define a running quark mass $m(\mu)$ through the equation

$$
\begin{equation*}
\mu \frac{d}{d \mu} m(\mu)=\gamma_{m} m(\mu), \tag{1}
\end{equation*}
$$

where γ_{m} is the so-called anomalous dimension of the mass.
(a) (10 points) Show first that γ_{m} is equivalently given through the renormalization group equation

$$
\begin{equation*}
\gamma_{m}=-\frac{1}{Z_{m}(\mu)} \mu \frac{d}{d \mu} Z_{m}(\mu) \tag{2}
\end{equation*}
$$

where Z_{m} is the mass renormalization constant.
(b) (15 points) The anomalous dimension of the mass can be expanded in a perturbation series in the strong coupling constant as:

$$
\begin{equation*}
\gamma_{m}=\gamma_{m}^{0} \frac{g^{2}(\mu)}{(4 \pi)^{2}}+\mathcal{O}\left(g^{4}\right) \tag{3}
\end{equation*}
$$

Use the known expression for $Z_{m}=1-\frac{g^{2}}{(4 \pi)^{2}} \frac{4}{\epsilon}$ to derive the value of γ_{m}^{0}. Hint: formula

$$
\begin{equation*}
\beta(g)=-\epsilon g\left[1+\frac{1}{\epsilon} \frac{\beta_{0}}{(4 \pi)^{2}} g^{2}+\mathcal{O}\left(g^{4}\right)\right] \tag{4}
\end{equation*}
$$

is useful and the expression for β_{0} is shown in Eq. 7 .
(c) (25 points) By inserting Eq. 3 into Eq. 1, derive the one-loop expression of the running quark mass:

$$
\begin{equation*}
m\left(Q^{2}\right)=\frac{\hat{m}}{\left(\ln \left(Q^{2} / \Lambda_{\mathrm{QCD}}^{2}\right)\right)^{d_{m}}}, \tag{5}
\end{equation*}
$$

with $d_{m}=4 /\left(11-2 / 3 N_{f}\right)$ and where \hat{m} is an integration constant (the mass analog of Λ_{QCD}) that equals $\hat{m}=m\left(Q^{2}=e \Lambda_{\mathrm{QCD}}^{2}\right)$ where e stands for Euler's number.

2 Running coupling constant in QCD in two loop order (50 points)

In QCD , the β-function in two loop order is of the form

$$
\begin{equation*}
\beta(g)=-\frac{\beta_{0}}{(4 \pi)^{2}} g^{3}-\frac{\beta_{1}}{(4 \pi)^{4}} g^{5}+\cdot, \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta_{0}=11-\frac{2}{3} N_{f}, \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{1}=102-\frac{38}{3} N_{f} . \tag{8}
\end{equation*}
$$

Show that the running coupling constant can be written as:

$$
\begin{equation*}
\alpha_{s}\left(Q^{2}\right) \equiv \frac{g^{2}\left(Q^{2}\right)}{4 \pi} \approx \frac{4 \pi}{\beta_{0} \ln \left(Q^{2} / \Lambda_{\mathrm{QCD}}^{2}\right)}\left[1-\frac{\beta_{1}}{\beta_{0}^{2}} \frac{\ln \ln \left(Q^{2} / \Lambda_{\mathrm{QCD}}^{2}\right)}{\ln \left(Q^{2} / \Lambda_{\mathrm{QCD}}^{2}\right)}\right] . \tag{9}
\end{equation*}
$$

Hints: the strategy in generally similar to the one where only 1-loop contribution is considered. Integrate between two mass scales and separate the dependence on each scale which implies that both LHS and RHS are equal to a constant that is chosen to be $\frac{-\beta_{0}}{4 \pi} \ln \left(\Lambda_{\mathrm{QCD}}^{2}\right)$.

In general, we are interested in $Q^{2} \gg \Lambda_{\mathrm{QCD}}^{2}$ because perturbative expansion is valid in that case. Therefore, the following approximations can be applied:

$$
\begin{gather*}
\ln \left[\frac{\beta_{0}^{2}}{4 \pi} \ln \left(\frac{Q^{2}}{\Lambda_{\mathrm{QCD}}^{2}}\right)+\frac{\beta_{1}}{4 \pi}\right] \approx \ln \ln \left[\frac{Q^{2}}{\Lambda_{\mathrm{QCD}}^{2}}\right] \tag{10}\\
{\left[1+\frac{\beta_{1}}{\beta_{0}^{2}} \frac{\ln \ln \left(Q^{2} / \Lambda_{\mathrm{QCD}}^{2}\right)}{\ln \left(Q^{2} / \Lambda_{\mathrm{QCD}}^{2}\right)}\right]^{-1} \approx\left[1-\frac{\beta_{1}}{\beta_{0}^{2}} \frac{\ln \ln \left(Q^{2} / \Lambda_{\mathrm{QCD}}^{2}\right)}{\ln \left(Q^{2} / \Lambda_{\mathrm{QCD}}^{2}\right)}\right]} \tag{11}
\end{gather*}
$$

