Handout 9 (read by Dec. 18)

Preliminary note: In the following, let G be a compact Lie group. We consider continuous finitedimensional representations $\Gamma=\{D(g)\}$, i.e., each $D_{i j}(g)$ depends continuously on g, and g depends continuously on a. The proofs of the following theorems require the substitutions

$$
\sum_{g} \rightarrow \int_{G} d \mu(g) \quad \text { and } \quad|G| \rightarrow V
$$

in section 2.3.

Theorem 3.2.4

1. 2.2.9-2.2.11: Every finite-dimensional representation of a compact Lie group is equivalent to a unitary representation. Therefore, it is possible to decompose the representation fully into a direct sum of irreducible representations.
2. 2.3.4: Let $\Gamma^{(\alpha)}=\left\{D^{(\alpha)}(g)\right\}$ be non-equivalent irreducible unitary finite-dimensional representations with dimension n_{α}. Then one has

$$
\int_{G} d \mu(g) D_{i r}^{(\alpha)}(g) D_{j s}^{(\beta) *}(g)=\frac{V}{n_{\alpha}} \delta^{\alpha \beta} \delta_{i j} \delta_{r s}
$$

3. 2.3.7: Let $\chi^{(\alpha)}$ be the character of $\Gamma^{(\alpha)}$:

$$
\int_{G} d \mu(g) \chi^{(\alpha)}(g) \chi^{(\beta) *}(g)=V \delta^{\alpha \beta}
$$

4. 2.3.13: Let $\Gamma=\oplus_{\alpha} f_{\alpha} \Gamma^{(\alpha)}$, where f_{α} denotes the multiplicity of $\Gamma^{(\alpha)}$ in Γ. Then one has

$$
f_{\alpha}=\frac{1}{V} \int_{G} d \mu(g) \chi^{(\alpha) *}(g) \chi(g),
$$

where χ is the character of Γ.
5. 2.3.17: Frobenius criterion for irreducibility:

A finite-dimensional representation Γ with character χ is irreducible iff $\int_{G} d \mu(g) \chi^{*}(g) \chi(g)=$ V.

Definition 3.4.2 Let $I=[a, b] \subseteq \mathbb{R}$ be an interval. A continuous function $g: I \rightarrow G$ is a path in G. The image $\Gamma=g(I)$ is called a curve in G. The function g is also called parameterization of the curve Γ.

If the group parameters a are continuous functions of a real variable then $g \circ a: I \rightarrow G$ is a path in G and

$$
\Gamma=\{g(a(t)) \mid t \in I \subseteq \mathbb{R} \wedge a(t) \text { continuous }\}
$$

is a curve in G.
Definition 3.4.3 1. Two elements $g_{1}, g_{2} \in G$ are called connected if they can be joined by a path in G.
2. G is called connected if every $g \in G$ can be joined with e by a path in G.

List of classical Lie groups

- general linear group: $\mathrm{GL}(n, \mathbb{K})$
- special linear group: $\mathrm{SL}(n, \mathbb{K}):=\{A \in \mathrm{GL}(n, \mathbb{K}) \mid \operatorname{det}(A)=1\}$
- $\operatorname{SL}_{1}(n, \mathbb{C}):=\{A \in \operatorname{GL}(n, \mathbb{C}) \mid \operatorname{det}(A) \in \mathbb{R}\}$
- $\mathrm{SL}_{2}(n, \mathbb{C}):=\{A \in \mathrm{GL}(n, \mathbb{C})| | \operatorname{det}(A) \mid=1\}$
- connected component of the identity in $\mathrm{GL}(n, \mathbb{R}): \mathrm{GL}^{+}(n, \mathbb{R}):=\{A \in \mathrm{GL}(n, \mathbb{R}) \mid \operatorname{det}(A)>$ $0\}$
- orthogonal group: $\mathrm{O}(n):=\left\{A \in \mathrm{GL}(n, \mathbb{R}) \mid A^{T} A=\mathbb{1}\right\}$
- complex orthogonal group: $\mathrm{O}(n, \mathbb{C}):=\left\{A \in \mathrm{GL}(n, \mathbb{C}) \mid A^{T} A=\mathbb{1}\right\}$
- special orthogonal group: $\mathrm{SO}(n):=\{A \in \mathrm{O}(n) \mid \operatorname{det}(A)=1\}$
- special complex orthogonal group: $\mathrm{SO}(n, \mathbb{C}):=\{A \in \mathrm{O}(n, \mathbb{C}) \mid \operatorname{det}(A)=1\}$
- unitary group: $\mathrm{U}(n):=\left\{A \in \mathrm{GL}(n, \mathbb{C}) \mid A^{\dagger} A=\mathbb{1}\right\}$
- special unitary group: $\mathrm{SU}(n):=\{A \in \mathrm{U}(n) \mid \operatorname{det}(A)=1\}$
- symplectic group: $\operatorname{Sp}(2 n, \mathbb{K}):=\left\{A \in \mathrm{GL}(2 n, \mathbb{K}) \mid A^{T} J A=J\right\}$, where

$$
J:=\left(\begin{array}{cc}
0 & \mathbb{1}_{n} \\
-\mathbb{1}_{n} & 0
\end{array}\right)
$$

- $\operatorname{Sp}(2 n):=\operatorname{Sp}(2 n, \mathbb{C}) \cap \mathrm{U}(2 n)$
- $\mathrm{O}(p, q):=\left\{A \in \mathrm{GL}(n, \mathbb{R}) \mid A^{T} G(p, q) A=G(p, q)\right\}$, where

$$
G(p, q)=\left(\begin{array}{cc}
\mathbb{1}_{p} & 0 \\
0 & -\mathbb{1}_{q}
\end{array}\right), \quad p+q=n
$$

- $\mathrm{SO}(p, q):=\mathrm{O}(p, q) \cap \mathrm{SL}(n, \mathbb{R})$
- $\mathrm{U}(p, q):=\left\{A \in \mathrm{GL}(n, \mathbb{C}) \mid A^{\dagger} G(p, q) A=G(p, q)\right\}$
- $\mathrm{SU}(p, q):=\mathrm{U}(p, q) \cap \operatorname{SL}(n, \mathbb{C})$

