Handout 10 (read by Jan. 8)

Consider a Hilbert space with three Hermitian operators J_{i} satisfying the commutation relations (Einstein's summation convention implied)

$$
\begin{equation*}
\left[J_{i}, J_{j}\right]=i \epsilon_{i j k} J_{k} . \tag{4.3}
\end{equation*}
$$

In terms of the definitions

$$
\begin{align*}
\vec{J}^{2} & :=J_{i} J_{i} \tag{4.4}\\
J_{ \pm} & :=J_{1} \pm i J_{2}
\end{align*}
$$

we obtain a number of useful relations which we will apply in the construction of irreducible representations:

$$
\begin{align*}
{\left[\vec{J}^{2}, J_{j}\right] } & =\left[J_{i} J_{i}, J_{j}\right] \\
& =J_{i}\left[J_{i}, J_{j}\right]+\left[J_{i}, J_{j}\right] J_{i} \\
& =J_{i} i \epsilon_{i j k} J_{k}+i \epsilon_{i j k} J_{k} J_{i} \\
& =i \epsilon_{i j k} J_{i} J_{k}-i \epsilon_{i j k} J_{i} J_{k} \\
& =0 . \tag{4.5}
\end{align*}
$$

According to definition 3.3.7, \vec{J}^{2} is a Casimir operator. In particular, Eq. (4.5) implies

$$
\begin{equation*}
\left[\vec{J}^{2}, J_{ \pm}\right]=0 \tag{4.6}
\end{equation*}
$$

Moreover, we find

$$
\begin{align*}
& {\left[J_{3}, J_{ \pm}\right]=\left[J_{3}, J_{1} \pm i J_{2}\right]=i J_{2} \pm J_{1}= \pm J_{ \pm},} \tag{4.7}\\
& {\left[J_{+}, J_{-}\right]=\left[J_{1}+i J_{2}, J_{1}-i J_{2}\right]=2 J_{3} .} \tag{4.8}
\end{align*}
$$

Finally, we will need various ways to express the Casimir operator in terms of $J_{ \pm}$and J_{3} :

$$
\begin{align*}
\vec{J}^{2} & =\frac{1}{2}\left(J_{+} J_{-}+J_{-} J_{+}\right)+J_{3}^{2} \\
& =J_{+} J_{-}-\frac{1}{2}\left[J_{+}, J_{-}\right]+J_{3}^{2} \\
& =J_{+} J_{-}-J_{3}+J_{3}^{2} \tag{4.9}\\
& =J_{-} J_{+}-\frac{1}{2}\left[J_{-}, J_{+}\right]+J_{3}^{2} \\
& =J_{-} J_{+}+J_{3}+J_{3}^{2} . \tag{4.10}
\end{align*}
$$

- 1. step: Since commuting operators have a common set of eigenstates, we simultaneously diagonalize J_{3} and \vec{J}^{2}. We denote the corresponding eigenstates initially by $|\lambda, \mu\rangle$:

$$
\begin{align*}
J_{3}|\lambda, \mu\rangle & =\mu|\lambda, \mu\rangle \tag{4.11}\\
\vec{J}^{2}|\lambda, \mu\rangle & =\lambda|\lambda, \mu\rangle \tag{4.12}
\end{align*}
$$

with real μ and λ, because \vec{J}^{2} and J_{3} are Hermitian. Moreover, eigenstates corresponding to different eigenvalues are orthogonal such that, after a suitable normalization, we can assume

$$
\left\langle\lambda, \mu \mid \lambda^{\prime}, \mu^{\prime}\right\rangle=\delta_{\lambda \lambda^{\prime}} \delta_{\mu \mu^{\prime}}
$$

Before proceeding to the next step, we need the following theorem:
Theorem 4.2.1 Let A and B be linear operators satisfying $A|a\rangle=a|a\rangle$ and $[A, B]=\alpha B$. Then applies:
$B|a\rangle$ is eigenstate of A with eigenvalue $a+\alpha$, provided $B|a\rangle \neq 0 .{ }^{1}$
Proof:

$$
A(B|a\rangle)=(A B)|a\rangle=(B A+[A, B])|a\rangle=B A|a\rangle+\alpha B|a\rangle=(a+\alpha)(B|a\rangle)
$$

- 2. step: We apply theorem 4.2 .1 using $A=\vec{J}^{2}$ or $A=J_{3}$ and $B=J_{ \pm}$and make use of the commutation relations of Eqs. (4.6) and (4.7). We then obtain $J_{ \pm}|\lambda, \mu\rangle$ as further eigenstates of \vec{J}^{2} and J_{3} with

$$
\begin{aligned}
\vec{J}^{2}\left(J_{ \pm}|\lambda, \mu\rangle\right) & =\lambda\left(J_{ \pm}|\lambda, \mu\rangle\right) \\
J_{3}\left(J_{ \pm}|\lambda, \mu\rangle\right) & =(\mu \pm 1)\left(J_{ \pm}|\lambda, \mu\rangle\right)
\end{aligned}
$$

provided $J_{ \pm}|\lambda, \mu\rangle \neq 0$. $J_{ \pm}$is raising or rather lowering operator for J_{3}. The eigenvalues of J_{3} are ordered in spacings of 1 .

Theorem 4.2.2 Let A be a Hermitian operator and $|\psi\rangle$ be an arbitrary normalized state. Then applies:

$$
\langle\psi| A^{2}|\psi\rangle \geq 0
$$

Proof: Let $\left|\psi^{\prime}\right\rangle=A|\psi\rangle$. As a result of the properties of the scalar product we obtain

$$
0 \leq\left\langle\psi^{\prime} \mid \psi^{\prime}\right\rangle=\langle\psi| A^{\dagger} A|\psi\rangle=\langle\psi| A^{2}|\psi\rangle
$$

for $A=A^{\dagger}$.

- 3. step: We establish a relation between λ and a maximal eigenvalue j of J_{3}.

Consider an eigenstate $|\lambda, \mu\rangle$ of \vec{J}^{2} and J_{3}. Because \vec{J}^{2} is the sum of squares of Hermitian operators, we obtain, using theorem 4.2.2,

$$
\lambda=\langle\lambda, \mu| \vec{J}^{2}|\lambda, \mu\rangle=\langle\lambda, \mu| J_{1}^{2}|\lambda, \mu\rangle+\langle\lambda, \mu| J_{2}^{2}|\lambda, \mu\rangle+\mu^{2}\langle\lambda, \mu \mid \lambda, \mu\rangle \geq \mu^{2} .
$$

Applying J_{+}to $|\lambda, \mu\rangle$ and normalizing the result, we find analogously

$$
\lambda \geq(\mu+1)^{2}
$$

and, after n successive applications,

$$
\lambda \geq(\mu+n)^{2}
$$

For sufficiently large n this leads to a contradiction unless, for a maximal value $\mu_{\max }=: j$, one has

$$
J_{+}|\lambda, j\rangle=0
$$

[^0]Using Eq. (4.10), we find for such a state

$$
\lambda|\lambda, j\rangle=\vec{J}^{2}|\lambda, j\rangle=\left(J_{-} J_{+}+J_{3}\left(J_{3}+1\right)\right)|\lambda, j\rangle=j(j+1)|\lambda, j\rangle,
$$

i.e., $\lambda=j(j+1)$.

In the following we write $|j, m\rangle$ for the eigenstates, in particular, for denoting the state we make use of the quantum number j instead of the eigenvalue $j(j+1)$.

- 4. step: We now prove the existence of a minimal eigenvalue $-j$ of J_{3}.

We start from $|j, j\rangle$. We apply J_{-}to this state, normalize the result and proceed as above:

$$
j(j+1) \geq(j-1)^{2}
$$

Applying $J_{-} n$ times yields

$$
j(j+1) \geq(j-n)^{2}=(n-j)^{2}
$$

which, again, for sufficiently large n results in a contradiction, unless a $\mu_{\text {min }}$ exists such that

$$
J_{-}\left|j, \mu_{\min }\right\rangle=0
$$

Using Eq. (4.9) we obtain

$$
j(j+1)\left|j, \mu_{\min }\right\rangle=\left(J_{+} J_{-}+J_{3}\left(J_{3}-1\right)\right)\left|j, \mu_{\min }\right\rangle=\mu_{\min }\left(\mu_{\min }-1\right)\left|j, \mu_{\min }\right\rangle
$$

with the solutions $\mu_{\min }=-j$ and $\mu_{\min }=j+1$. Because of $\mu_{\max }=j$ we can discard the second solution.

- 5. step: We now turn to the question which values for j are possible.

For a given j, the eigenvalues of J_{3} extend from $-j$ to j in steps of 1. ${ }^{2}$ The number of eigenvalues is $2 j+1$ and corresponds to the dimension of the representation. It, therefore, has to be a natural number:

$$
2 j+1 \in \mathbb{N}=\{1,2,3,4, \ldots\} \quad \Rightarrow \quad j=0, \frac{1}{2}, 1, \frac{3}{2}, \ldots
$$

For a given j, the set consisting of the states $|j, \mu\rangle$ with $-j \leq \mu \leq j$ is referred to as a multiplet.

- 6. step: Finally, we establish a convention fixing the relative phases between the states of a multiplet.
To that end we consider the squared norm of the state $J_{ \pm}|j, m\rangle$:

$$
\begin{equation*}
\| J_{ \pm}|j, m\rangle \|^{2}=\langle j, m| J_{ \pm}^{\dagger} J_{ \pm}|j, m\rangle=\langle j, m| J_{\mp} J_{ \pm}|j, m\rangle \tag{*}
\end{equation*}
$$

Using Eqs. (4.9) and (4.10), we write

$$
J_{\mp} J_{ \pm}=\vec{J}^{2}-J_{3}^{2} \mp J_{3}
$$

[^1]and evaluate ($*$):
\[

$$
\begin{aligned}
\| J_{ \pm}|j, m\rangle \|^{2} & =\langle j, m|\left(\vec{J}^{2}-J_{3}^{2} \mp J_{3}\right)|j, m\rangle \\
& =j(j+1)-m(m \pm 1) \\
& =(j \mp m)(j \pm m+1) .
\end{aligned}
$$
\]

We make use of the so-called Condon-Shortley phase convention for states with the same j and different m :

$$
\begin{align*}
J_{ \pm}|j, m\rangle & =\sqrt{(j \mp m)(j \pm m+1)}|j, m \pm 1\rangle \tag{4.13}\\
& =\sqrt{j(j+1)-m(m \pm 1)}|j, m \pm 1\rangle \tag{4.14}
\end{align*}
$$

[^0]: ${ }^{1}$ By definition the zero vector does not qualify as an eigenvector.

[^1]: ${ }^{2}$ The set of all eigenvalues of a linear operator A is the spectrum of A.

