Handout 10 (read by Jan. 8)

Consider a Hilbert space with three Hermitian operators J; satisfying the commutation
relations (Einstein’s summation convention implied)

In terms of the definitions
J° = JJ;, | (4.4)
J:t = Jl + ZJQ,

we obtain a number of useful relations which we will apply in the construction of irreducible
representations:

(T2, ;) = [Jii, Jj]
= JilJi J}) + [ T3]
= Jzzewak + Zez]kjkjl

= ZEZ]kJZJk — Zeljk‘]l‘]]{,‘

=0. (4.5)
According to definition 3.3.7, J 2 is a Casimir operator. In particular, Eq. (4.5) implies
[J2,J.] =0. (4.6)
Moreover, we find
[J3, J1] = [J3, 1 £ids] =ide £ J; = £J4, (4.7)
[y, J_] = [ +ide, i —ids] = 2J5. (4.8)

Finally, we will need various ways to express the Casimir operator in terms of J. and Js:
> 1
ﬂ:?LL+LLHJ§

:LL—QLJJ+@
=J.J —J3+ J3 (4.9)
:Jdu—%uﬂiq+ﬁ
=J_Jp+ s+ J5. (4.10)

e 1. step: Since commuting operators have a common set of eigenstates, we simultaneously
diagonalize J3 and J 2. We denote the corresponding eigenstates initially by |\, u):

T2\ ) = A p), (4.12)

with real p and A, because J? and Js are Hermitian. Moreover, eigenstates corresponding
to different eigenvalues are orthogonal such that, after a suitable normalization, we can
assume

<)\7 M|/\/7 /J“/> = 5)\>\’5;L;L’-



Before proceeding to the next step, we need the following theorem:

Theorem 4.2.1 Let A and B be linear operators satisfying Ala) = ala) and [A, B] = aB.
Then applies:

Bla) is eigenstate of A with eigenvalue a + o, provided Bla) # 0.1
Proof:

A(B|a)) = (AB)la) = (BA+ [A, B])|a) = BA|a) + aBla) = (a + «)(Bla)).

e 2. step: We apply theorem 4.2.1 using A = J2or A = J; and B = J, and make use
of the commutation relations of Eqs. (4.6) and (4.7). We then obtain J. |\, u) as further
eigenstates of J2 and J3 with

jQ(Ji’)U:u)) = A(Ji‘)‘au>)>
Js(JelA ) = (p £ (A, 1)),

provided Ji |\, p) # 0. Ji is raising or rather lowering operator for J;. The eigenvalues
of J3 are ordered in spacings of 1.

Theorem 4.2.2 Let A be a Hermitian operator and |1) be an arbitrary normalized state. Then
applies:
(¥1A%) > 0.

Proof: Let |¢') = A|¢)). As a result of the properties of the scalar product we obtain
0 < (W|y) = (VIATAY) = (¥|4%y)
for A= Al

e 3. step: We establish a relation between A and a maximal eigenvalue j of J3.

Consider an eigenstate |\, u) of J?2 and Js. Because J 2 is the sum of squares of Hermitian
operators, we obtain, using theorem 4.2.2,

A= (Ol T2 ) = (Ol TEIN )+ Ol T3IN, 1) + 1O A ) > .
Applying J; to |, p) and normalizing the result, we find analogously
A> (p+1)°
and, after n successive applications,
A > (p+n)?.

For sufficiently large n this leads to a contradiction unless, for a maximal value fiy. =: 7,
one has
J+|/\7 .]> =0.

By definition the zero vector does not qualify as an eigenvector.



Using Eq. (4.10), we find for such a state

e, A=j(j+1).

In the following we write |7, m) for the eigenstates, in particular, for denoting the state
we make use of the quantum number j instead of the eigenvalue j(j + 1).

e 4. step: We now prove the existence of a minimal eigenvalue —j of Js.

We start from |7, j). We apply J_ to this state, normalize the result and proceed as above:
J+1) = (- 1)%
Applying J_ n times yields
jG+1) =G —n)=n-j)>

which, again, for sufficiently large n results in a contradiction, unless a pi;, exists such
that

‘]—|ja ,umin> = 0.
Using Eq. (4.9) we obtain

](] + 1)’]7 ﬂmin> = (J+J— + J3(J5 - 1))‘ja,umin> = ,umin(,umin - 1)|J> ,umin>7

with the solutions pigiy, = —7 and pyy, = j + 1. Because of . = J we can discard the
second solution.

e 5. step: We now turn to the question which values for j are possible.

For a given j, the eigenvalues of J; extend from —j to j in steps of 1.2 The number of
eigenvalues is 27 4+ 1 and corresponds to the dimension of the representation. It, therefore,
has to be a natural number:

1
2j+1eN={1.234,..} = j=01
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For a given j, the set consisting of the states |j, 1) with —j < p < j is referred to as a
multiplet.

e 6. step: Finally, we establish a convention fixing the relative phases between the states of
a multiplet.

To that end we consider the squared norm of the state Ji|j, m):
||J:|:|.]> Tn)”2 = <]am|‘]i<]:|:|]7 m> = <]7m|JZFJ:|:|ja m> (*)
Using Eqgs. (4.9) and (4.10), we write

Jede = J%— J2F Js

2The set of all eigenvalues of a linear operator A is the spectrum of A.



and evaluate (x):

1Txlj,m)|* = (Gom|(J2 = J5 F J5)|j,m)
=j(j+1)—m(m=*1)
=({Fm)(iEtm+1).

We make use of the so-called Condon-Shortley phase convention for states with the same
7 and different m:

Jeljm) = /(G Fm)(j £m+1)|j,mE1) (4.13)
= V(G + 1) —m(m £1)[j,m+£1). (4.14)






