
Handout 10 (read by Jan. 8)

Consider a Hilbert space with three Hermitian operators Ji satisfying the commutation
relations (Einstein’s summation convention implied)

[Ji, Jj] = iεijkJk. (4.3)

In terms of the definitions

~J 2 := JiJi,

J± := J1 ± iJ2,
(4.4)

we obtain a number of useful relations which we will apply in the construction of irreducible
representations:

[ ~J 2, Jj] = [JiJi, Jj]

= Ji[Ji, Jj] + [Ji, Jj]Ji

= JiiεijkJk + iεijkJkJi

= iεijkJiJk − iεijkJiJk
= 0. (4.5)

According to definition 3.3.7, ~J 2 is a Casimir operator. In particular, Eq. (4.5) implies

[ ~J 2, J±] = 0. (4.6)

Moreover, we find

[J3, J±] = [J3, J1 ± iJ2] = iJ2 ± J1 = ±J±, (4.7)

[J+, J−] = [J1 + iJ2, J1 − iJ2] = 2J3. (4.8)

Finally, we will need various ways to express the Casimir operator in terms of J± and J3:

~J 2 =
1

2
(J+J− + J−J+) + J2

3

= J+J− −
1

2
[J+, J−] + J2

3

= J+J− − J3 + J2
3 (4.9)

= J−J+ −
1

2
[J−, J+] + J2

3

= J−J+ + J3 + J2
3 . (4.10)

• 1. step: Since commuting operators have a common set of eigenstates, we simultaneously
diagonalize J3 and ~J 2. We denote the corresponding eigenstates initially by |λ, µ〉:

J3|λ, µ〉 = µ|λ, µ〉, (4.11)

~J 2|λ, µ〉 = λ|λ, µ〉, (4.12)

with real µ and λ, because ~J 2 and J3 are Hermitian. Moreover, eigenstates corresponding
to different eigenvalues are orthogonal such that, after a suitable normalization, we can
assume

〈λ, µ|λ′, µ′〉 = δλλ′δµµ′ .



Before proceeding to the next step, we need the following theorem:

Theorem 4.2.1 Let A and B be linear operators satisfying A|a〉 = a|a〉 and [A,B] = αB.
Then applies:

B|a〉 is eigenstate of A with eigenvalue a+ α, provided B|a〉 6= 0.1

Proof:

A(B|a〉) = (AB)|a〉 = (BA+ [A,B])|a〉 = BA|a〉+ αB|a〉 = (a+ α)(B|a〉).

• 2. step: We apply theorem 4.2.1 using A = ~J 2 or A = J3 and B = J± and make use
of the commutation relations of Eqs. (4.6) and (4.7). We then obtain J±|λ, µ〉 as further

eigenstates of ~J 2 and J3 with

~J 2(J±|λ, µ〉) = λ(J±|λ, µ〉),
J3(J±|λ, µ〉) = (µ± 1)(J±|λ, µ〉),

provided J±|λ, µ〉 6= 0. J± is raising or rather lowering operator for J3. The eigenvalues
of J3 are ordered in spacings of 1.

Theorem 4.2.2 Let A be a Hermitian operator and |ψ〉 be an arbitrary normalized state. Then
applies:

〈ψ|A2|ψ〉 ≥ 0.

Proof: Let |ψ′〉 = A|ψ〉. As a result of the properties of the scalar product we obtain

0 ≤ 〈ψ′|ψ′〉 = 〈ψ|A†A|ψ〉 = 〈ψ|A2|ψ〉

for A = A†.

• 3. step: We establish a relation between λ and a maximal eigenvalue j of J3.

Consider an eigenstate |λ, µ〉 of ~J 2 and J3. Because ~J 2 is the sum of squares of Hermitian
operators, we obtain, using theorem 4.2.2,

λ = 〈λ, µ| ~J 2|λ, µ〉 = 〈λ, µ|J2
1 |λ, µ〉+ 〈λ, µ|J2

2 |λ, µ〉+ µ2〈λ, µ|λ, µ〉 ≥ µ2.

Applying J+ to |λ, µ〉 and normalizing the result, we find analogously

λ ≥ (µ+ 1)2

and, after n successive applications,

λ ≥ (µ+ n)2.

For sufficiently large n this leads to a contradiction unless, for a maximal value µmax =: j,
one has

J+|λ, j〉 = 0.

1By definition the zero vector does not qualify as an eigenvector.



Using Eq. (4.10), we find for such a state

λ|λ, j〉 = ~J 2|λ, j〉 =
(
J−J+ + J3(J3 + 1)

)
|λ, j〉 = j(j + 1)|λ, j〉,

i.e., λ = j(j + 1).

In the following we write |j,m〉 for the eigenstates, in particular, for denoting the state
we make use of the quantum number j instead of the eigenvalue j(j + 1).

• 4. step: We now prove the existence of a minimal eigenvalue −j of J3.

We start from |j, j〉. We apply J− to this state, normalize the result and proceed as above:

j(j + 1) ≥ (j − 1)2.

Applying J− n times yields

j(j + 1) ≥ (j − n)2 = (n− j)2,

which, again, for sufficiently large n results in a contradiction, unless a µmin exists such
that

J−|j, µmin〉 = 0.

Using Eq. (4.9) we obtain

j(j + 1)|j, µmin〉 =
(
J+J− + J3(J3 − 1)

)
|j, µmin〉 = µmin(µmin − 1)|j, µmin〉,

with the solutions µmin = −j and µmin = j + 1. Because of µmax = j we can discard the
second solution.

• 5. step: We now turn to the question which values for j are possible.

For a given j, the eigenvalues of J3 extend from −j to j in steps of 1.2 The number of
eigenvalues is 2j+1 and corresponds to the dimension of the representation. It, therefore,
has to be a natural number:

2j + 1 ∈ N = {1, 2, 3, 4, . . .} ⇒ j = 0,
1

2
, 1,

3

2
, . . . .

For a given j, the set consisting of the states |j, µ〉 with −j ≤ µ ≤ j is referred to as a
multiplet.

• 6. step: Finally, we establish a convention fixing the relative phases between the states of
a multiplet.

To that end we consider the squared norm of the state J±|j,m〉:

‖J±|j,m〉‖2 = 〈j,m|J†±J±|j,m〉 = 〈j,m|J∓J±|j,m〉. (∗)

Using Eqs. (4.9) and (4.10), we write

J∓J± = ~J 2 − J2
3 ∓ J3

2The set of all eigenvalues of a linear operator A is the spectrum of A.



and evaluate (∗):

‖J±|j,m〉‖2 = 〈j,m|( ~J 2 − J2
3 ∓ J3)|j,m〉

= j(j + 1)−m(m± 1)

= (j ∓m)(j ±m+ 1).

We make use of the so-called Condon-Shortley phase convention for states with the same
j and different m:

J±|j,m〉 =
√

(j ∓m)(j ±m+ 1)|j,m± 1〉 (4.13)

=
√
j(j + 1)−m(m± 1)|j,m± 1〉. (4.14)




