Symmetries in Physics (WS 2018/2019)
 Exercise 5

1. We consider the so-called vector representation of the group D_{3} on the vector space \mathbb{R}^{3}. This representation is defined in terms of a rotation by 120° about the z-axis and a rotation by 180° about the x-axis, i.e.,

$$
D_{3}^{V}(c)=\left(\begin{array}{ccc}
-\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\
\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right), \quad D_{3}^{V}(b)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

(a) [2] Determine the matrices $D_{3}^{V}\left(c^{2}\right), D_{3}^{V}(b c)$, and $D_{3}^{V}\left(b c^{2}\right)$. Note that D_{3}^{V} is a representation.
(b) [2] $D_{3}^{V}(b c)$ and $D_{3}^{V}\left(b c^{2}\right)$ represent rotations by 180° about the rotation axes $\hat{n}(b c)$ and $\hat{n}\left(b c^{2}\right)$, respectively. Determine the rotation axes. Hint: Interpret the rotation axes as eivenvectors with eigenvalue 1.
(c) [1] Determine for the three conjugacy classes K_{i} the character of D_{3}^{V}.
(d) [2] Determine the coefficients a_{μ}^{V} of the decomposition

$$
D_{3}^{V}=a_{1}^{V} D^{(1)} \oplus a_{2}^{V} D^{(2)} \oplus a_{3}^{V} D^{(3)} .
$$

2. [3] Consider $G=D_{3}$. Determine in analogy to the lecture the coefficients $a_{\sigma}^{\mu \nu}$, $\mu, \nu, \sigma=1,2,3$, of the Clebsch-Gordan decomposition of the inner tensor product representation

$$
D^{(\mu)} \otimes D^{(\nu)}=a_{1}^{\mu \nu} D^{(1)} \oplus a_{2}^{\mu \nu} D^{(2)} \oplus a_{3}^{\mu \nu} D^{(3)} .
$$

Hint: Make use of the orthogonality relation for characters of irreducible representations. The character of the inner tensor product representation is equal to the product of the characters.
3. [5] How many real parameters does one need to describe the groups (explain your result)

- $\operatorname{SL}(n, \mathbb{C})=\{A \mid A \in \mathrm{GL}(n, \mathbb{C}), \operatorname{det}(A)=1\}$,
- $\operatorname{SL}(n, \mathbb{R})=\{A \mid A \in \operatorname{GL}(n, \mathbb{R}), \operatorname{det}(A)=1\}$,
- $\mathrm{SU}(n)=\{A \mid A \in \mathrm{U}(n), \operatorname{det}(A)=1\}$,
- $\mathrm{O}(n, \mathbb{C})=\left\{A \mid A \in \mathrm{GL}(n, \mathbb{C}), A^{T} A=A A^{T}=\mathbb{1}_{n \times n}\right\}$,
- $\mathrm{O}(n, \mathbb{R})=\left\{A \mid A \in \mathrm{GL}(n, \mathbb{R}), A^{T} A=A A^{T}=\mathbb{1}_{n \times n}\right\}$?

4. [2] We consider the group $\mathrm{O}(2)$. Let A be an element of the branch $\mathrm{SO}(2)$ and B be an element of the branch $S_{1} \mathrm{SO}(2)$ (see example 1.3.6, Handout 2), where

$$
A=\left(\begin{array}{cc}
\cos (\alpha) & -\sin (\alpha) \\
\sin (\alpha) & \cos (\alpha)
\end{array}\right), \quad B=\left(\begin{array}{cc}
\cos (\beta) & -\sin (\beta) \\
-\sin (\beta) & -\cos (\beta)
\end{array}\right), \quad 0 \leq \alpha, \beta<2 \pi .
$$

Calculate the distance

$$
d(A, B):=\|A-B\|=\left[\sum_{i, j=1}^{2}\left(A_{i j}-B_{i j}\right)^{2}\right]^{\frac{1}{2}} .
$$

5. Consider so $(n):=\left\{B \in \operatorname{gl}(n, \mathbb{R}) \mid B^{T}=-B\right\}$, i.e. the set of all skew symmetric real $n \times n$ matrices $(n \geq 2)$.
(a) [1] Show that so(n) is, in combination with matrix addition and scalar multiplication, a real vector space.
(b) [1] Verify that

$$
[A, B]:=A B-B A \quad \forall A, B \in \operatorname{so}(n)
$$

defines a closed bilinear multiplication, where $A B$ refers to standard matrix multiplication (examine closure and linearity in both factors).
(c) [1] Verify the Jacobi identity.
(d) [1] What is the dimension of so(3)? Specify explicitly corresponding basis vectors.
6. [1] Consider the angular momentum algebra $\left[J_{i}, J_{j}\right]=i \epsilon_{i j k} J_{k}$. Show that the product is not associative,

$$
\left[J_{i},\left[J_{j}, J_{k}\right]\right] \neq\left[\left[J_{i}, J_{j}\right], J_{k}\right] .
$$

7. Let \mathcal{L} be a Lie algebra with basis $\left\{L_{\alpha}\right\}$ and commutation relations

$$
\left[L_{\alpha}, L_{\beta}\right]=C_{\alpha \beta \gamma} L_{\gamma} .
$$

(a) [1] Verify $C_{\alpha \beta \gamma}=-C_{\beta \alpha \gamma}$.
(b) [2] Verify $C_{\beta \gamma \mu} C_{\alpha \mu \delta}+C_{\gamma \alpha \mu} C_{\beta \mu \delta}+C_{\alpha \beta \mu} C_{\gamma \mu \delta}=0$.
8. [2] Let G be a classical Lie group with Lie algebra $\mathcal{L} G$. Using a Taylor series expansion, verify for $C, D \in \mathcal{L} G$ and $t \in \mathbb{R}$

$$
\exp (t C) \exp (t D) \exp (-t C) \exp (-t D)=I+t^{2}[C, D]+\mathcal{O}\left(t^{3}\right), \quad t \rightarrow 0
$$

9. [2] Consider the angular momentum algbra $\left[J_{i}, J_{j}\right]=i \epsilon_{i j k} J_{k}$. Using

$$
\begin{aligned}
J_{ \pm}|j, m\rangle & =\sqrt{(j \mp m)(j \pm m+1)}|j, m \pm 1\rangle, \quad J_{ \pm}=J_{1} \pm i J_{2}, \\
J_{3}|j, m\rangle & =m|j, m\rangle, \\
\left\langle j, m \mid j, m^{\prime}\right\rangle & =\delta_{m m^{\prime}},
\end{aligned}
$$

construct the three-dimensional representation $\Psi^{(1)}\left(J_{i}\right)(i=1,2,3)$ of the angular momentum algebra.

