Name:

Symmetries in Physics (WS 2018/2019)
 Exercise 4

1. Consider the Hamilton operator of the two-electron system of Example 2.2.22:

$$
H=\underbrace{\frac{\vec{p}^{2}(1)}{2 m}+V_{1}(r(1))}_{H_{0}(1)}+\underbrace{\frac{\vec{p}^{2}(2)}{2 m}+V_{1}(r(2))}_{H_{0}(2)}+V_{2}\left(r_{12}\right)=: H_{0}+V_{2}
$$

with ($n=1,2$)

$$
r(n)=|\vec{r}(n)|, \quad r_{12}=|\vec{r}(1)-\vec{r}(2)|, \quad V_{1}(r(n))=-\frac{Z \alpha}{r(n)}, \quad V_{2}\left(r_{12}\right)=\frac{\alpha}{r_{12}}
$$

and the commutation relations ($m, n \in\{1,2\} ; i, j \in\{1,2,3\}$)

$$
\left[x_{i}(m), x_{j}(n)\right]=0, \quad\left[p_{i}(m), p_{j}(n)\right]=0, \quad\left[x_{i}(m), p_{j}(n)\right]=i \delta_{i j} \delta_{m n} .
$$

(a) [3] Evaluate $\left[\ell_{i}(n), V_{2}\left(r_{12}\right)\right]$ for $n=1$ and $n=2$.
(b) [1] Verify $\left[L_{i}, V_{2}\left(r_{12}\right)\right]=0$, where $\vec{L}=\vec{\ell}(1)+\vec{\ell}(2)$.
2. Consider the Hilbert space $\mathcal{H}_{\frac{1}{2}}$ of a spin- $1 / 2$ particle with basis

$$
\left\{|\uparrow\rangle:=\binom{1}{0},|\downarrow\rangle:=\binom{0}{1}\right\} .
$$

(a) [1] Let $\sigma_{i}, i=1,2,3$, be the Pauli matrices and $\sigma_{ \pm}:=\sigma_{1} \pm i \sigma_{2}$. Evaluate

$$
\sigma_{ \pm}\binom{1}{0}, \quad \sigma_{ \pm}\binom{0}{1}, \quad \sigma_{3}\binom{1}{0}, \quad \sigma_{3}\binom{0}{1} .
$$

Define $\mathcal{H}:=\mathcal{H}_{\frac{1}{2}} \otimes \mathcal{H}_{\frac{1}{2}}$ and

$$
|1\rangle=|\uparrow\rangle \otimes|\uparrow\rangle, \quad|2\rangle=|\uparrow\rangle \otimes|\downarrow\rangle, \quad|3\rangle=|\downarrow\rangle \otimes|\uparrow\rangle, \quad|4\rangle=|\downarrow\rangle \otimes|\downarrow\rangle .
$$

We introduce the following new basis:

$$
\begin{aligned}
& |1,1\rangle:=|1\rangle, \quad|1,0\rangle:=\frac{1}{\sqrt{2}}(|2\rangle+|3\rangle), \quad|1,-1\rangle:=|4\rangle, \\
& |0,0\rangle:=\frac{1}{\sqrt{2}}(|2\rangle-|3\rangle) .
\end{aligned}
$$

We define the operator for the total spin as $\vec{S}=\frac{\vec{\sigma}}{2} \otimes \mathbb{1}+\mathbb{1} \otimes \frac{\vec{\sigma}}{2}=\frac{\vec{\sigma}(1)}{2}+\frac{\vec{\sigma}(2)}{2}=$ $\vec{S}(1)+\vec{S}(2)$.
(b) [2] Evaluate S_{3} applied to $|1,1\rangle,|1,0\rangle,|1,-1\rangle$, and $|0,0\rangle$.
(c) [4] Determine \vec{S}^{2} applied to $|1,1\rangle$ and $|0,0\rangle$.

Hints:
$\vec{S}^{2}=\left(\frac{\sigma_{i}}{2} \otimes \mathbb{1}+\mathbb{1} \otimes \frac{\sigma_{i}}{2}\right)\left(\frac{\sigma_{i}}{2} \otimes \mathbb{1}+\mathbb{1} \otimes \frac{\sigma_{i}}{2}\right)=\frac{1}{4}\left(\vec{\sigma}^{2} \otimes \mathbb{1}+2 \sigma_{i} \otimes \sigma_{i}+\mathbb{1} \otimes \vec{\sigma}^{2}\right)$.
Physics notation:

$$
\vec{S}^{2}=\frac{1}{4}\left(\vec{\sigma}^{2}(1)+2 \sigma_{i}(1) \sigma_{i}(2)+\vec{\sigma}^{2}(2)\right)
$$

Express $\sigma_{i}(1) \sigma_{i}(2)$ in terms of the operators $\sigma_{ \pm}$and σ_{3} and make use of the results of (a).
3. Removal of degeneracy. [4] Consider the following Hamilton operator for two spin- $1 / 2$ particles (we are no longer using the direct product notation)

$$
H=\underbrace{a\left(\vec{S}^{2}(1)+\vec{S}^{2}(2)\right)}_{H_{0}}+\underbrace{2 b \vec{S}(1) \cdot \vec{S}(2)}_{H_{1}}+\underbrace{c\left(S_{3}(1)+S_{3}(2)\right)}_{H_{2}}
$$

with $0<c \ll b \ll a, \vec{S}(i)=\frac{\vec{\sigma}(i)}{2}, i=1,2 . H_{0}$ is invariant under $\mathrm{SU}(2) \times \mathrm{SU}(2)$, H_{1} is invariant under $\{(g, g) \mid g \in \mathrm{SU}(2)\} \cong \mathrm{SU}(2)$, and H_{2} is invariant under $\mathrm{U}(1)$. Determine the eigenstates and eigenvalues of $H_{0}, H_{0}+H_{1}$, and $H_{0}+H_{1}+H_{2}$. Sketch the spectrum. Make use of $\vec{S}=\vec{S}(1)+\vec{S}(2)$ and the results of problem 2 .
4. [1] Let $D^{(1)}$ and $D^{(2)}$ be two equivalent, finite-dimensional representations of a group G on the vector spaces V_{1} and V_{2}. Verify for the characters $\chi^{(1)}(g)=\chi^{(2)}(g) \forall g \in G$.
5. [4] Construct in analogy to Example 2.3.15 the regular representations of the groups $C_{4}=\left\{e, c, c^{2}, c^{3}\right\}$ with $c^{4}=e$ and of the Klein four-group $V=\{e, a, b, c\}$ with $a^{2}=b^{2}=c^{2}=e($ see Exercise 1, problem 2).
Hint: The matrices of the regular representation are defined as

$$
g g_{i}=\sum_{j=1}^{|G|} D_{j i}(g) g_{j}, \quad i=1, \ldots,|G|
$$

Enumerate $g_{1}=e, g_{2}=c, g_{3}=c^{2}, g_{4}=c^{3}$ and $g_{1}=e, g_{2}=a, g_{3}=b, g_{4}=c$.
6. Consider the abstract group D_{3} with six elements $\left\{e, c, c^{2}, b, b c, b c^{2}\right\}$ (see Example 1.2.10).
(a) [2] Construct a two-dimensional representation on \mathbb{R}^{2} by interpreting the group elements geometrically as active rotations about the origin or as reflections.
Example:

$$
D(e)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad D(c)=\left(\begin{array}{cc}
\cos \left(\frac{2 \pi}{3}\right) & -\sin \left(\frac{2 \pi}{3}\right) \\
\sin \left(\frac{2 \pi}{3}\right) & \cos \left(\frac{2 \pi}{3}\right)
\end{array}\right)=\left(\begin{array}{cc}
-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right)
$$

Choose for b a mirror reflection over the x-axis.
(b) [1] Determine the character of the 6 group elements.
(c) [4] Determine the 4 six-dimensional vectors $\left(D_{i j}(e), D_{i j}(c), \ldots, D_{i j}\left(b c^{2}\right)\right)^{T}$. Verify explicitly the $4+3+2+1=10$ orthogonality relations

$$
\sum_{g} D_{i r}(g) D_{j s}^{*}(g)=\frac{6}{2} \delta_{i j} \delta_{r s}
$$

