Handout 7 (read by Dec. 4)

Guide for constructing a character table

Let G be a finite group of order $|G|$. The information contained in the characters of irreducible representations may be summarized in terms of a so-called character table. In the following we summarize the results of the previous section and provide a guide for constructing the character table.

1. A character table is a quadratic matrix, whose entries consist of the values of the characters of the non-equivalent irreducible representations. A row contains the values for a given irreducible representation, whereas the conjugacy classes are sorted in terms of the columns.
2. The total number r of non-equivalent irreducible representations equals the number k of conjugacy classes (theorem 2.3.12). Therefore, the character table is an $r \times r$ matrix:

	K_{1}	K_{2}	\ldots	K_{r}
$\chi^{(1)}$	x	x	\ldots	x
$\chi^{(2)}$	x	x	\ldots	x
\vdots	\vdots	\vdots	\vdots	\vdots
$\chi^{(r)}$	x	x	\ldots	x

3. The dimensions $n_{\mu}(\mu=1, \ldots, r)$ of the non-equivalent irreducible representations satisfy the following sum rule related to the order $|G|$ of the group (theorem 2.3.16):

$$
\sum_{\mu=1}^{r} n_{\mu}^{2}=|G| .
$$

4. For any group G, the trivial representation, $D^{(1)}(g)=1 \forall g \in G$, always exists. By convention, we denote this representation with the label 1 with $n_{1}=1$.
5. The value of the character of the unit element e is given by the dimension of the corresponding representation:

$$
\chi^{(\mu)}(e)=n_{\mu} .
$$

The unit element is only conjugate to itself, i.e., $(e)=\{e\}$. We always denote the corresponding conjugacy class by $K_{1}=(e)$.
6. For one-dimensional representations we have $\chi(g)=D(g)$ such that
(a) $\chi\left(g_{1} g_{2}\right)=\chi\left(g_{1}\right) \chi\left(g_{2}\right)$,
(b) $\chi(g) \neq 0$.
7. The characters of non-equivalent irreducible representations satisfy the orthogonality relation (theorem 2.3.10)

$$
\frac{1}{|G|} \sum_{i=1}^{k} k_{i} \chi_{i}^{(\mu)} \chi_{i}^{(\nu) *}=\delta^{\mu \nu}
$$

where k_{i} is the number of group elements in the conjugacy class K_{i}.
8. Concerning the conjugacy classes the orthogonality relation reads (theorem 2.3.18)

$$
\frac{k_{i}}{|G|} \sum_{\mu=1}^{r} \chi_{i}^{(\mu)} \chi_{j}^{(\mu) *}=\delta_{i j}
$$

9. Make use of any additional 'useful' information.
