Handout 6 (read by Nov. 27)

Example 2.2.22 from QM.

Consider the Hamilton operator of a two-electron system in the Coulomb field of a nucleus with charge $Z e, e>0$ (see, e.g., G. K. Woodgate, Elementary atomic structure, Clarendon Press, Oxford, 1983, chapter 5):

$$
H=\underbrace{\frac{\vec{p}^{2}(1)}{2 m}+V_{1}(r(1))}_{H_{0}(1)}+\underbrace{\frac{\vec{p}^{2}(2)}{2 m}+V_{1}(r(2))}_{H_{0}(2)}+V_{2}\left(r_{12}\right)=: H_{0}+V_{2}
$$

with $(n=1,2)$

$$
\begin{aligned}
r(n) & =|\vec{r}(n)|, & r_{12} & =|\vec{r}(1)-\vec{r}(2)|, \\
V_{1}(r(n)) & =-\frac{Z e^{2}}{4 \pi r(n)}, & V_{2}\left(r_{12}\right) & =\frac{e^{2}}{4 \pi r_{12}} .
\end{aligned}
$$

The commutation relations for the components of the position and momentum operators read ($m, n \in\{1,2\} ; i, j \in\{1,2,3\}$):

$$
\begin{aligned}
{\left[x_{i}(m), x_{j}(n)\right] } & =0 \\
{\left[p_{i}(m), p_{j}(n)\right] } & =0 \\
{\left[x_{i}(m), p_{j}(n)\right] } & =i \delta_{i j} \delta_{m n}
\end{aligned}
$$

- If we neglect the interaction between the two electrons, the system is described by the Hamilton operator $H_{0}=H_{0}(1)+H_{0}(2)$, which has a $G=\mathrm{O}(3) \times \mathrm{O}(3)$ symmetry. By this we mean, that the Hamilton operator is invariant under independent transformations of the operators of particle 1 and of particle 2, respectively,

$$
\begin{array}{lll}
x_{i}^{\prime}(1)=R_{i j}(1) x_{j}(1), & p_{i}^{\prime}(1)=R_{i j}(1) p_{j}(1), & R(1) \in \mathrm{O}(3), \\
x_{i}^{\prime}(2)=R_{i j}(2) x_{j}(2), & p_{i}^{\prime}(2)=R_{i j}(2) p_{j}(2), & R(2) \in \mathrm{O}(3) .
\end{array}
$$

There is no need to choose $R(1)=R(2)$ and, therefore, the symmetry group is the external direct product $\mathrm{O}(3) \times \mathrm{O}(3)$.

- The Hamilton operators $H_{0}(1)$ and $H_{0}(2)$ commute. Therefore, a product ansatz is made for the solutions of the stationary Schrödinger equation. Using Dirac's bra-ket notation, the eigenstates are of the type ${ }^{1}$

$$
\left|n_{1}, l_{1}, m_{1}\right\rangle \otimes\left|n_{2}, l_{2}, m_{2}\right\rangle
$$

where $\left\{\left|l_{i}, m_{i}\right\rangle \mid m_{i}=-l_{i}, \ldots, l_{i}\right\}, l_{i} \in \mathbb{N}_{0}$, are bases of the carrier spaces of irreducible representations $D^{\left(l_{i}\right)}$ of $\mathrm{SO}(3)$. If $\left|V_{2}\right| \ll\left|H_{0}\right|$, one makes use of $\left|l_{1}, m_{1}\right\rangle \otimes\left|l_{2}, m_{2}\right\rangle$ as the starting point of perturbation theory.

[^0]- Let us define $G^{\prime}:=\{(g, g) \mid g \in \mathrm{O}(3)\} \cong \mathrm{O}(3)$. The Hamilton operator $H=H_{0}+V_{2}$ has a lower symmetry than H_{0}, because $G^{\prime}<G$. This reduction in symmetry originates from the fact that (exercise)

$$
\left[\ell_{i}(n), V_{2}\left(r_{12}\right)\right] \neq 0
$$

i.e., the individual angular momenta are no longer conserved quantities. On the other hand,

$$
\left[L_{i}, V_{2}\left(r_{12}\right)\right]=0
$$

with $\vec{L}=\vec{\ell}(1)+\vec{\ell}(2)(=\vec{\ell} \otimes I+I \otimes \vec{\ell})$, such that the total angular momentum is still a conserved quantity. The eigenstates of H may be classified with respect to the total angular momentum, where

$$
\{|L, M\rangle, M=-L, \ldots, L\}
$$

is the basis of the carrier space of an irreducible representation $D^{(L)}$ of $\mathrm{SO}(3)$. The interaction between the two electrons, V_{2}, leads to a (partial) removal of the degeneracy of the energy levels of H_{0}, because H has a lower symmetry than H_{0}.

[^0]: ${ }^{1}$ For the moment, we omit the electron spin and also neglect the Pauli principle, which is enforced in terms of a totally antisymmetric wavefunction.

