Handout 4 (read by Nov. 13)

Example 1.3.16 Elements of $\mathrm{SO}(3)$ with a given fixed angle of rotation form a conjugacy class.
Explanation: Each rotation D may be characterized by a rotation axis \hat{n} and an angle of rotation $0 \leq \varphi<2 \pi$, where

$$
D \hat{n}=\hat{n}, \quad \operatorname{Tr}(D)=1+2 \cos (\varphi)
$$

Let $\operatorname{Tr}\left(D_{1}\right)=\operatorname{Tr}\left(D_{2}\right)$. For a suitable basis, $\hat{n}_{1}=\hat{e}_{1}$ and $D_{1} \hat{n}_{1}=\hat{n}_{1}$, i.e.,

$$
D_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \left(\varphi_{1}\right) & -\sin \left(\varphi_{1}\right) \\
0 & \sin \left(\varphi_{1}\right) & \cos \left(\varphi_{1}\right)
\end{array}\right) \quad \text { with } 0 \leq \varphi_{1}<2 \pi
$$

Let $T \in \mathrm{SO}(3)$ be such that the rotation axis \hat{n}_{1} is mapped under T on the rotation axis \hat{n}_{2}, i.e., $\hat{n}_{2}=T \hat{n}_{1}$ and $\hat{n}_{1}=T^{-1} \hat{n}_{2}$. From

$$
T^{-1} D_{2} T \hat{n}_{1}=T^{-1} D_{2} \hat{n}_{2}=T^{-1} \hat{n}_{2}=\hat{n}_{1}
$$

we conclude that $T^{-1} D_{2} T$ is also a rotation about the axis \hat{n}_{1}. Let

$$
T^{-1} D_{2} T=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \left(\varphi_{2}\right) & -\sin \left(\varphi_{2}\right) \\
0 & \sin \left(\varphi_{2}\right) & \cos \left(\varphi_{2}\right)
\end{array}\right)
$$

We now consider the following trace,

$$
\operatorname{Tr}\left(T^{-1} D_{2} T\right)=\operatorname{Tr}\left(T T^{-1} D_{2}\right)=\operatorname{Tr}\left(D_{2}\right)=1+2 \cos \left(\varphi_{2}\right)=\operatorname{Tr}\left(D_{1}\right)=1+2 \cos \left(\varphi_{1}\right)
$$

From this we conclude

$$
\cos \left(\varphi_{1}\right)=\cos \left(\varphi_{2}\right) \Rightarrow \varphi_{2}= \pm \varphi_{1}
$$

We distinguish two different cases:

1. $\varphi_{2}=\varphi_{1}$: In this case we have $D_{1}=T^{-1} D_{2} T$.
2. $\varphi_{2}=-\varphi_{1}$: We first determine

$$
T^{-1} D_{2} T=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \left(\varphi_{1}\right) & \sin \left(\varphi_{1}\right) \\
0 & -\sin \left(\varphi_{1}\right) & \cos \left(\varphi_{1}\right)
\end{array}\right) .
$$

Multiplication from the right by

$$
S=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \in \mathrm{SO}(3)
$$

and from the left by $S^{-1}=S$ yields

$$
\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \left(\varphi_{1}\right) & \sin \left(\varphi_{1}\right) \\
0 & -\sin \left(\varphi_{1}\right) & \cos \left(\varphi_{1}\right)
\end{array}\right)\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \left(\varphi_{1}\right) & -\sin \left(\varphi_{1}\right) \\
0 & \sin \left(\varphi_{1}\right) & \cos \left(\varphi_{1}\right)
\end{array}\right) .
$$

We thus find

$$
D_{1}=S^{-1} T^{-1} D_{2} T S=(T S)^{-1} D_{2}(T S)
$$

