Name:

Symmetries in Physics (WS 2018/2019)
 Exercise 3

1. Consider

$$
\mathrm{SU}(2) \ni U_{j}(\theta)=\exp \left(-i \theta \frac{\sigma_{j}}{2}\right), \quad j=1,2,3,
$$

with the Pauli matrices

$$
\sigma_{1}:=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}:=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}:=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

(a) [3] Using the series expansion of the exponential function, verify

$$
U_{j}(\theta)=\cos \left(\frac{\theta}{2}\right) \mathbb{1}-i \sin \left(\frac{\theta}{2}\right) \sigma_{j} .
$$

Hint: $\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma_{3}^{2}=\mathbb{1}$.
(b) [2] Verify

$$
U_{3}(\gamma)=\left(\begin{array}{cc}
\exp \left(-i \frac{\gamma}{2}\right) & 0 \\
0 & \exp \left(i \frac{\gamma}{2}\right)
\end{array}\right), \quad U_{2}(\beta)=\left(\begin{array}{cc}
\cos \left(\frac{\beta}{2}\right) & -\sin \left(\frac{\beta}{2}\right) \\
\sin \left(\frac{\beta}{2}\right) & \cos \left(\frac{\beta}{2}\right)
\end{array}\right) .
$$

Remark: Later on, the entries of $U_{2}(\beta)$ will be denoted by $d_{m m^{\prime}}^{\left(\frac{1}{2}\right)}(\beta)$.
(c) [1] Evaluate $U_{3}(2 \pi)$ and $U_{3}(2 \pi+\theta)$? When do you reach the identity.
2. Consider the state $|n, l, m\rangle=|2,1,1\rangle$ of the hydrgen atom,

$$
\Psi_{211}(\vec{x})=R_{21}(r) Y_{11}(\theta, \phi) .
$$

(a) [2] Evaluate the expectation value $\langle 2,1,1| \ell_{x}|2,1,1\rangle$.

$$
\begin{array}{ll}
\text { Hints: } & \int_{0}^{\infty} \mathrm{d} r r^{2} R_{21}^{2}(r)=1, \quad Y_{11}(\theta, \phi)=-\sqrt{\frac{3}{8 \pi}} \sin (\theta) e^{i \phi}, \\
& \ell_{x}=i\left[\sin (\phi) \frac{\partial}{\partial \theta}+\cot (\theta) \cos (\phi) \frac{\partial}{\partial \phi}\right] .
\end{array}
$$

(b) [2] Consider a rotation about the y axis with rotation angle β in terms of

$$
\mathcal{R}(0, \beta, 0)=\exp \left(-i \beta \ell_{y}\right) .
$$

Using the Baker-Campbell-Hausdorff formula

$$
e^{A} B e^{-A}=B+[A, B]+\frac{1}{2!}[A,[A, B]]+\frac{1}{3!}[A,[A,[A, B]]]+\ldots
$$

for $A=i \beta \ell_{y}$ and $B=\ell_{x}$ in combination with canonical commutation relations for the angular momentum operators, derive

$$
\exp \left(i \beta \ell_{y}\right) \ell_{x} \exp \left(-i \beta \ell_{y}\right)=\cos (\beta) \ell_{x}+\sin (\beta) \ell_{z} .
$$

(c) [2] Now consider the state which results from a rotation about the y axis with rotation angle $\pi / 2$:

$$
|2,1,1\rangle^{\prime}=\exp \left(-i \frac{\pi}{2} \ell_{y}\right)|2,1,1\rangle
$$

Evaluate ${ }^{\prime}\langle 2,1,1| \ell_{x}|2,1,1\rangle^{\prime}$.
(d) [2] Using the canonical commutation relations

$$
\left[x_{i}, x_{j}\right]=0, \quad\left[p_{i}, p_{j}\right]=0, \quad\left[x_{i}, p_{j}\right]=i \delta_{i j}
$$

in combination with the definition $\ell_{i}=\epsilon_{i j k} x_{j} p_{k}$, derive the commutation relations $\left[x_{i}, \ell_{j}\right]$ and $\left[p_{i}, \ell_{j}\right]$.
(e) [2] Now evaluate

$$
\exp \left(i \beta \ell_{y}\right) x \exp \left(-i \beta \ell_{y}\right) \quad \text { and } \quad \exp \left(i \beta \ell_{y}\right) p_{x} \exp \left(-i \beta \ell_{y}\right)
$$

3. [2] Let G be a group and define $M:=\{D \mid D$ representation of $G\}$. Verify that the definition $D_{1}: V_{1} \rightarrow V_{1} \sim D_{2}: V_{2} \rightarrow V_{2}$, if a bijective $S: V_{1} \rightarrow V_{2}$ exists with $S D_{1}(g) S^{-1}=D_{2}(g) \forall g \in G$, indeed provides an equivalence relation.
4. [2] Consider the following three-dimensional representation $D: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ of the permutation group S_{3} :

$$
\begin{array}{ll}
D\left(P_{1}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), & D\left(P_{2}\right)=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right),
\end{array} \begin{array}{ll}
1 & D\left(P_{3}\right)=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right), \\
D\left(P_{4}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), & D\left(P_{5}\right)=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right),
\end{array}
$$

Show that the representation is reducible.
Hint: Find a common eigenvector of all $D(g)$ and thus a non-trivial invariant vector subspace.
5. [3] Let $D=\{D(g)\}$ be a representation of a group G in terms of matrices with $g \mapsto D(g)$. Verify that
(1) $g \mapsto D^{*}(g)$,
(2) $g \mapsto D^{T}\left(g^{-1}\right)$,
(3) $g \mapsto D^{\dagger}\left(g^{-1}\right)$
also define representations.
Hint: First argue why the matrices (1), (2), and (3) are invertible. Then verify the homomorphism property.
6. [2] Consider a two-dimensional representation of $\mathrm{SU}(2)$ over \mathbb{C}^{2}, using elements of the form

$$
U(\theta, \hat{n})=\exp \left(-i \frac{\theta}{2} \hat{n} \cdot \vec{\sigma}\right)
$$

where $\sigma_{i}(i=1,2,3)$ are Pauli matrices.
Verify that $\left\{U^{*}(\theta, \hat{n})\right\}$ is an equivalent representation.
Hint: Determine σ_{i}^{*}. Using $S=-i \sigma_{2}$, verify

$$
U^{*}(\theta, \hat{n})=S U(\theta, \hat{n}) S^{-1}
$$

